]> git.scottworley.com Git - planeteer/blob - planeteer.go
Implement --drones and --batteries.
[planeteer] / planeteer.go
1 /* Planeteer: Give trade route advice for Planets: The Exploration of Space
2 * Copyright (C) 2011 Scott Worley <sworley@chkno.net>
3 *
4 * This program is free software: you can redistribute it and/or modify
5 * it under the terms of the GNU Affero General Public License as
6 * published by the Free Software Foundation, either version 3 of the
7 * License, or (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU Affero General Public License for more details.
13 *
14 * You should have received a copy of the GNU Affero General Public License
15 * along with this program. If not, see <http://www.gnu.org/licenses/>.
16 */
17
18 package main
19
20 import "flag"
21 import "fmt"
22 import "json"
23 import "os"
24 import "strings"
25
26 var funds = flag.Int("funds", 0,
27 "Starting funds")
28
29 var start = flag.String("start", "",
30 "The planet to start at")
31
32 var flight_plan_string = flag.String("flight_plan", "",
33 "Your hyper-holes for the day, comma-separated.")
34
35 var end_string = flag.String("end", "",
36 "A comma-separated list of acceptable ending planets.")
37
38 var planet_data_file = flag.String("planet_data_file", "planet-data",
39 "The file to read planet data from")
40
41 var fuel = flag.Int("fuel", 16, "Hyper Jump power left")
42
43 var hold = flag.Int("hold", 300, "Size of your cargo hold")
44
45 var start_edens = flag.Int("start_edens", 0,
46 "How many Eden Warp Units are you starting with?")
47
48 var end_edens = flag.Int("end_edens", 0,
49 "How many Eden Warp Units would you like to keep (not use)?")
50
51 var cloak = flag.Bool("cloak", false,
52 "Make sure to end with a Device of Cloaking")
53
54 var drones = flag.Int("drones", 0, "Buy this many Fighter Drones")
55
56 var batteries = flag.Int("batteries", 0, "Buy this many Shield Batterys")
57
58 var drone_price = flag.Int("drone_price", 0, "Today's Fighter Drone price")
59
60 var battery_price = flag.Int("battery_price", 0, "Today's Shield Battery price")
61
62 var visit_string = flag.String("visit", "",
63 "A comma-separated list of planets to make sure to visit")
64
65 func visit() []string {
66 if *visit_string == "" {
67 return nil
68 }
69 return strings.Split(*visit_string, ",")
70 }
71
72 func flight_plan() []string {
73 if *flight_plan_string == "" {
74 return nil
75 }
76 return strings.Split(*flight_plan_string, ",")
77 }
78
79 func end() map[string]bool {
80 if *end_string == "" {
81 return nil
82 }
83 m := make(map[string]bool)
84 for _, p := range strings.Split(*end_string, ",") {
85 m[p] = true
86 }
87 return m
88 }
89
90 type Commodity struct {
91 BasePrice int
92 CanSell bool
93 Limit int
94 }
95 type Planet struct {
96 BeaconOn bool
97 /* Use relative prices rather than absolute prices because you
98 can get relative prices without traveling to each planet. */
99 RelativePrices map[string]int
100 }
101 type planet_data struct {
102 Commodities map[string]Commodity
103 Planets map[string]Planet
104 p2i, c2i map[string]int // Generated; not read from file
105 i2p, i2c []string // Generated; not read from file
106 }
107
108 func ReadData() (data planet_data) {
109 f, err := os.Open(*planet_data_file)
110 if err != nil {
111 panic(err)
112 }
113 defer f.Close()
114 err = json.NewDecoder(f).Decode(&data)
115 if err != nil {
116 panic(err)
117 }
118 return
119 }
120
121 /* This program operates by filling in a state table representing the best
122 * possible trips you could make; the ones that makes you the most money.
123 * This is feasible because we don't look at all the possible trips.
124 * We define a list of things that are germane to this game and then only
125 * consider the best outcome in each possible game state.
126 *
127 * Each cell in the table represents a state in the game. In each cell,
128 * we track two things: 1. the most money you could possibly have while in
129 * that state and 2. one possible way to get into that state with that
130 * amount of money.
131 *
132 * A basic analysis can be done with a two-dimensional table: location and
133 * fuel. planeteer-1.0 used this two-dimensional table. This version
134 * adds features mostly by adding dimensions to this table.
135 *
136 * Note that the sizes of each dimension are data driven. Many dimensions
137 * collapse to one possible value (ie, disappear) if the corresponding
138 * feature is not enabled.
139 *
140 * The order of the dimensions in the list of constants below determines
141 * their layout in RAM. The cargo-based 'dimensions' are not completely
142 * independent -- some combinations are illegal and not used. They are
143 * handled as three dimensions rather than one for simplicity. Placing
144 * these dimensions first causes the unused cells in the table to be
145 * grouped together in large blocks. This keeps them from polluting
146 * cache lines, and if they are large enough, prevent the memory manager
147 * from allocating pages for these areas at all.
148 *
149 * If the table gets too big to fit in RAM:
150 * * Combine the Edens, Cloaks, and UnusedCargo dimensions. Of the
151 * 24 combinations, only 15 are legal: a 38% savings.
152 * * Reduce the size of the Fuel dimension to 3. We only ever look
153 * backwards 2 units, so just rotate the logical values through
154 * the same 3 physical addresses. This is good for an 82% savings.
155 * * Reduce the size of the Edens dimension from 3 to 2, for the
156 * same reasons as Fuel above. 33% savings.
157 * * Buy more ram. (Just sayin'. It's cheaper than you think.)
158 *
159 */
160
161 // The official list of dimensions:
162 const (
163 // Name Num Size Description
164 Edens = iota // 1 3 # of Eden warp units (0 - 2 typically)
165 Cloaks // 2 2 # of Devices of Cloaking (0 or 1)
166 UnusedCargo // 3 4 # of unused cargo spaces (0 - 3 typically)
167 Fuel // 4 17 Hyper jump power left (0 - 16)
168 Location // 5 26 Location (which planet)
169 Hold // 6 15 Cargo bay contents (a *Commodity or nil)
170 BuyFighters // 7 2 Errand: Buy fighter drones
171 BuyShields // 8 2 Errand: Buy shield batteries
172 Visit // 9 2**N Visit: Stop by these N planets in the route
173
174 NumDimensions
175 )
176
177 func bint(b bool) int {
178 if b {
179 return 1
180 }
181 return 0
182 }
183
184 func DimensionSizes(data planet_data) []int {
185 eden_capacity := data.Commodities["Eden Warp Units"].Limit
186 if *start_edens > eden_capacity {
187 eden_capacity = *start_edens
188 }
189 cloak_capacity := bint(*cloak)
190 dims := make([]int, NumDimensions)
191 dims[Edens] = eden_capacity + 1
192 dims[Cloaks] = cloak_capacity + 1
193 dims[UnusedCargo] = eden_capacity + cloak_capacity + 1
194 dims[Fuel] = *fuel + 1
195 dims[Location] = len(data.Planets)
196 dims[Hold] = len(data.Commodities) + 1
197 dims[BuyFighters] = bint(*drones > 0) + 1
198 dims[BuyShields] = bint(*batteries > 0) + 1
199 dims[Visit] = 1 << uint(len(visit()))
200
201 // Remind myself to add a line above when adding new dimensions
202 for i, dim := range dims {
203 if dim < 1 {
204 panic(i)
205 }
206 }
207 return dims
208 }
209
210 func StateTableSize(dims []int) int {
211 product := 1
212 for _, size := range dims {
213 product *= size
214 }
215 return product
216 }
217
218 type State struct {
219 value, from int
220 }
221
222 func EncodeIndex(dims, addr []int) int {
223 index := addr[0]
224 if addr[0] > dims[0] {
225 panic(0)
226 }
227 for i := 1; i < NumDimensions; i++ {
228 if addr[i] < 0 || addr[i] > dims[i] {
229 panic(i)
230 }
231 index = index*dims[i] + addr[i]
232 }
233 return index
234 }
235
236 func DecodeIndex(dims []int, index int) []int {
237 addr := make([]int, NumDimensions)
238 for i := NumDimensions - 1; i > 0; i-- {
239 addr[i] = index % dims[i]
240 index /= dims[i]
241 }
242 addr[0] = index
243 return addr
244 }
245
246 func InitializeStateTable(data planet_data, dims []int) []State {
247 table := make([]State, StateTableSize(dims))
248
249 addr := make([]int, NumDimensions)
250 addr[Fuel] = *fuel
251 addr[Edens] = *start_edens
252 addr[Location] = data.p2i[*start]
253 table[EncodeIndex(dims, addr)].value = *funds
254
255 return table
256 }
257
258 /* These four fill procedures fill in the cell at address addr by
259 * looking at all the possible ways to reach this cell and selecting
260 * the best one.
261 *
262 * The other obvious implementation choice is to do this the other way
263 * around -- for each cell, conditionally overwrite all the other cells
264 * that are reachable *from* the considered cell. We choose gathering
265 * reads over scattering writes to avoid having to take a bunch of locks.
266 */
267
268 func UpdateCell(table []State, here, there, value_difference int) {
269 possible_value := table[there].value + value_difference
270 if table[there].value > 0 && possible_value > table[here].value {
271 table[here].value = possible_value
272 table[here].from = there
273 }
274 }
275
276 func FillCellByArriving(data planet_data, dims []int, table []State, addr []int) {
277 my_index := EncodeIndex(dims, addr)
278 other := make([]int, NumDimensions)
279 copy(other, addr)
280
281 /* Travel here via a 2-fuel unit jump */
282 if addr[Fuel]+2 < dims[Fuel] {
283 other[Fuel] = addr[Fuel] + 2
284 for other[Location] = 0; other[Location] < dims[Location]; other[Location]++ {
285 if data.Planets[data.i2p[addr[Location]]].BeaconOn {
286 UpdateCell(table, my_index, EncodeIndex(dims, other), 0)
287 }
288 }
289 other[Location] = addr[Location]
290 other[Fuel] = addr[Fuel]
291 }
292
293 /* Travel here via a hyper hole */
294 if addr[Fuel]+1 < dims[Fuel] {
295 hole_index := (dims[Fuel] - 1) - (addr[Fuel] + 1)
296 if hole_index < len(flight_plan()) && addr[Location] == data.p2i[flight_plan()[hole_index]] {
297 other[Fuel] = addr[Fuel] + 1
298 for other[Location] = 0; other[Location] < dims[Location]; other[Location]++ {
299 UpdateCell(table, my_index, EncodeIndex(dims, other), 0)
300 }
301 other[Location] = addr[Location]
302 other[Fuel] = addr[Fuel]
303 }
304 }
305
306 /* Travel here via Eden Warp Unit */
307 if addr[Edens]+1 < dims[Edens] && addr[UnusedCargo] > 1 {
308 _, available := data.Planets[data.i2p[addr[Location]]].RelativePrices["Eden Warp Units"]
309 if !available {
310 other[Edens] = addr[Edens] + 1
311 other[UnusedCargo] = addr[UnusedCargo] - 1
312 for other[Location] = 0; other[Location] < dims[Location]; other[Location]++ {
313 UpdateCell(table, my_index, EncodeIndex(dims, other), 0)
314 }
315 other[Location] = addr[Location]
316 other[UnusedCargo] = addr[UnusedCargo]
317 other[Edens] = addr[Edens]
318 }
319 }
320 }
321
322 func FillCellBySelling(data planet_data, dims []int, table []State, addr []int) {
323 if addr[Hold] > 0 {
324 // Can't sell and still have cargo
325 return
326 }
327 if addr[UnusedCargo] > 0 {
328 // Can't sell everything and still have 'unused' holds
329 return
330 }
331 my_index := EncodeIndex(dims, addr)
332 other := make([]int, NumDimensions)
333 copy(other, addr)
334 planet := data.i2p[addr[Location]]
335 for other[Hold] = 0; other[Hold] < dims[Hold]; other[Hold]++ {
336 commodity := data.i2c[other[Hold]]
337 if !data.Commodities[commodity].CanSell {
338 // TODO: Dump cargo
339 continue
340 }
341 relative_price, available := data.Planets[planet].RelativePrices[commodity]
342 if !available {
343 continue
344 }
345 base_price := data.Commodities[commodity].BasePrice
346 absolute_price := float64(base_price) * float64(relative_price) / 100.0
347 sell_price := int(absolute_price * 0.9)
348
349 for other[UnusedCargo] = 0; other[UnusedCargo] < dims[UnusedCargo]; other[UnusedCargo]++ {
350
351 quantity := *hold - (other[UnusedCargo] + other[Cloaks] + other[Edens])
352 sale_value := quantity * sell_price
353 UpdateCell(table, my_index, EncodeIndex(dims, other), sale_value)
354 }
355 }
356 other[UnusedCargo] = addr[UnusedCargo]
357 }
358
359 func FillCellByBuying(data planet_data, dims []int, table []State, addr []int) {
360 if addr[Hold] == 0 {
361 // Can't buy and then have nothing
362 return
363 }
364 my_index := EncodeIndex(dims, addr)
365 other := make([]int, NumDimensions)
366 copy(other, addr)
367 planet := data.i2p[addr[Location]]
368 commodity := data.i2c[addr[Hold]]
369 if !data.Commodities[commodity].CanSell {
370 return
371 }
372 relative_price, available := data.Planets[planet].RelativePrices[commodity]
373 if !available {
374 return
375 }
376 base_price := data.Commodities[commodity].BasePrice
377 absolute_price := int(float64(base_price) * float64(relative_price) / 100.0)
378 quantity := *hold - (addr[UnusedCargo] + addr[Cloaks] + addr[Edens])
379 total_price := quantity * absolute_price
380 other[Hold] = 0
381 other[UnusedCargo] = 0
382 UpdateCell(table, my_index, EncodeIndex(dims, other), -total_price)
383 other[UnusedCargo] = addr[UnusedCargo]
384 other[Hold] = addr[Hold]
385 }
386
387 func FillCellByMisc(data planet_data, dims []int, table []State, addr []int) {
388 my_index := EncodeIndex(dims, addr)
389 other := make([]int, NumDimensions)
390 copy(other, addr)
391
392 /* Buy a Device of Cloaking */
393 if addr[Cloaks] == 1 && addr[UnusedCargo] < dims[UnusedCargo]-1 {
394 relative_price, available := data.Planets[data.i2p[addr[Location]]].RelativePrices["Device Of Cloakings"]
395 if available {
396 absolute_price := int(float64(data.Commodities["Device Of Cloakings"].BasePrice) * float64(relative_price) / 100.0)
397 other[Cloaks] = 0
398 if other[Hold] != 0 {
399 other[UnusedCargo] = addr[UnusedCargo] + 1
400 }
401 UpdateCell(table, my_index, EncodeIndex(dims, other), -absolute_price)
402 other[UnusedCargo] = addr[UnusedCargo]
403 other[Cloaks] = addr[Cloaks]
404 }
405 }
406
407 /* Silly: Dump a Device of Cloaking */
408
409 /* Buy Fighter Drones */
410 if addr[BuyFighters] == 1 {
411 relative_price, available := data.Planets[data.i2p[addr[Location]]].RelativePrices["Fighter Drones"]
412 if available {
413 absolute_price := int(float64(data.Commodities["Fighter Drones"].BasePrice) * float64(relative_price) / 100.0)
414 other[BuyFighters] = 0
415 UpdateCell(table, my_index, EncodeIndex(dims, other), -absolute_price * *drones)
416 other[BuyFighters] = addr[BuyFighters]
417 }
418 }
419
420 /* Buy Shield Batteries */
421 if addr[BuyShields] == 1 {
422 relative_price, available := data.Planets[data.i2p[addr[Location]]].RelativePrices["Shield Batterys"]
423 if available {
424 absolute_price := int(float64(data.Commodities["Shield Batterys"].BasePrice) * float64(relative_price) / 100.0)
425 other[BuyShields] = 0
426 UpdateCell(table, my_index, EncodeIndex(dims, other), -absolute_price * *batteries)
427 other[BuyShields] = addr[BuyShields]
428 }
429 }
430
431 /* Visit this planet */
432
433 }
434
435 func FillCellByBuyingEdens(data planet_data, dims []int, table []State, addr []int) {
436 my_index := EncodeIndex(dims, addr)
437 other := make([]int, NumDimensions)
438 copy(other, addr)
439
440 /* Buy Eden warp units */
441 eden_limit := data.Commodities["Eden Warp Units"].Limit
442 if addr[Edens] > 0 && addr[Edens] <= eden_limit {
443 relative_price, available := data.Planets[data.i2p[addr[Location]]].RelativePrices["Eden Warp Units"]
444 if available {
445 absolute_price := int(float64(data.Commodities["Eden Warp Units"].BasePrice) * float64(relative_price) / 100.0)
446 for quantity := addr[Edens]; quantity > 0; quantity-- {
447 other[Edens] = addr[Edens] - quantity
448 if addr[Hold] != 0 {
449 other[UnusedCargo] = addr[UnusedCargo] + quantity
450 }
451 if other[UnusedCargo] < dims[UnusedCargo] {
452 UpdateCell(table, my_index, EncodeIndex(dims, other), -absolute_price * quantity)
453 }
454 }
455 other[Edens] = addr[Edens]
456 other[UnusedCargo] = addr[UnusedCargo]
457 }
458 }
459 }
460
461 func FillStateTable2Iteration(data planet_data, dims []int, table []State,
462 addr []int, f func(planet_data, []int, []State, []int)) {
463 /* TODO: Justify the safety of the combination of this dimension
464 * iteration and the various phases f. */
465 for addr[Hold] = 0; addr[Hold] < dims[Hold]; addr[Hold]++ {
466 for addr[Cloaks] = 0; addr[Cloaks] < dims[Cloaks]; addr[Cloaks]++ {
467 for addr[UnusedCargo] = 0; addr[UnusedCargo] < dims[UnusedCargo]; addr[UnusedCargo]++ {
468 for addr[BuyFighters] = 0; addr[BuyFighters] < dims[BuyFighters]; addr[BuyFighters]++ {
469 for addr[BuyShields] = 0; addr[BuyShields] < dims[BuyShields]; addr[BuyShields]++ {
470 for addr[Visit] = 0; addr[Visit] < dims[Visit]; addr[Visit]++ {
471 f(data, dims, table, addr)
472 }
473 }
474 }
475 }
476 }
477 }
478 }
479
480 func FillStateTable2(data planet_data, dims []int, table []State,
481 addr []int, barrier chan<- bool) {
482 FillStateTable2Iteration(data, dims, table, addr, FillCellByArriving)
483 FillStateTable2Iteration(data, dims, table, addr, FillCellBySelling)
484 FillStateTable2Iteration(data, dims, table, addr, FillCellByBuying)
485 FillStateTable2Iteration(data, dims, table, addr, FillCellByMisc)
486 barrier <- true
487 }
488
489 /* Filling the state table is a set of nested for loops NumDimensions deep.
490 * We split this into two procedures: 1 and 2. #1 is the outer, slowest-
491 * changing indexes. #1 fires off many calls to #2 that run in parallel.
492 * The order of the nesting of the dimensions, the order of iteration within
493 * each dimension, and where the 1 / 2 split is placed are carefully chosen
494 * to make this arrangement safe.
495 *
496 * Outermost two layers: Go from high-energy states (lots of fuel, edens) to
497 * low-energy state. These must be processed sequentially and in this order
498 * because you travel through high-energy states to get to the low-energy
499 * states.
500 *
501 * Third layer: Planet. This is a good layer to parallelize on. There's
502 * high enough cardinality that we don't have to mess with parallelizing
503 * multiple layers for good utilization (on 2011 machines). Each thread
504 * works on one planet's states and need not synchronize with peer threads.
505 */
506 func FillStateTable1(data planet_data, dims []int, table []State) {
507 barrier := make(chan bool, len(data.Planets))
508 eden_capacity := data.Commodities["Eden Warp Units"].Limit
509 work_units := (float64(*fuel) + 1) * (float64(eden_capacity) + 1)
510 work_done := 0.0
511 for fuel_remaining := *fuel; fuel_remaining >= 0; fuel_remaining-- {
512 for edens_remaining := eden_capacity; edens_remaining >= 0; edens_remaining-- {
513 /* Do the brunt of the work */
514 for planet := range data.Planets {
515 addr := make([]int, len(dims))
516 addr[Edens] = edens_remaining
517 addr[Fuel] = fuel_remaining
518 addr[Location] = data.p2i[planet]
519 go FillStateTable2(data, dims, table, addr, barrier)
520 }
521 for _ = range data.Planets {
522 <-barrier
523 }
524 work_done++
525 print(fmt.Sprintf("\r%3.0f%%", 100*work_done/work_units))
526 }
527 /* Make an Eden-buying pass (uphill) */
528 addr := make([]int, len(dims))
529 addr[Fuel] = fuel_remaining
530 for addr[Edens] = 0; addr[Edens] <= eden_capacity; addr[Edens]++ {
531 for planet := range data.Planets {
532 addr[Location] = data.p2i[planet]
533 FillStateTable2Iteration(data, dims, table, addr, FillCellByBuyingEdens)
534 }
535 }
536 }
537 print("\n")
538 }
539
540 func FindBestState(data planet_data, dims []int, table []State) int {
541 addr := make([]int, NumDimensions)
542 addr[Edens] = *end_edens
543 addr[Cloaks] = dims[Cloaks] - 1
544 addr[BuyFighters] = dims[BuyFighters] - 1
545 addr[BuyShields] = dims[BuyShields] - 1
546 addr[Visit] = dims[Visit] - 1
547 // Fuel, Hold, UnusedCargo left at 0
548 max_index := -1
549 max_value := 0
550 for addr[Location] = 0; addr[Location] < dims[Location]; addr[Location]++ {
551 if len(end()) == 0 || end()[data.i2p[addr[Location]]] {
552 index := EncodeIndex(dims, addr)
553 if table[index].value > max_value {
554 max_value = table[index].value
555 max_index = index
556 }
557 }
558 }
559 return max_index
560 }
561
562 func Commas(n int) (s string) {
563 r := n % 1000
564 n /= 1000
565 for n > 0 {
566 s = fmt.Sprintf(",%03d", r) + s
567 r = n % 1000
568 n /= 1000
569 }
570 s = fmt.Sprint(r) + s
571 return
572 }
573
574 func DescribePath(data planet_data, dims []int, table []State, start int) (description []string) {
575 for index := start; index > 0 && table[index].from > 0; index = table[index].from {
576 var line string
577 addr := DecodeIndex(dims, index)
578 prev := DecodeIndex(dims, table[index].from)
579 if addr[Fuel] != prev[Fuel] {
580 from := data.i2p[prev[Location]]
581 to := data.i2p[addr[Location]]
582 line += fmt.Sprintf("Jump from %v to %v (%v hyper jump units)", from, to, prev[Fuel]-addr[Fuel])
583 }
584 if addr[Edens] == prev[Edens] - 1 {
585 from := data.i2p[prev[Location]]
586 to := data.i2p[addr[Location]]
587 line += fmt.Sprintf("Eden warp from %v to %v", from, to)
588 }
589 if addr[Hold] != prev[Hold] {
590 if addr[Hold] == 0 {
591 quantity := *hold - (prev[UnusedCargo] + prev[Edens] + prev[Cloaks])
592 line += fmt.Sprintf("Sell %v %v", quantity, data.i2c[prev[Hold]])
593 } else if prev[Hold] == 0 {
594 quantity := *hold - (addr[UnusedCargo] + addr[Edens] + addr[Cloaks])
595 line += fmt.Sprintf("Buy %v %v", quantity, data.i2c[addr[Hold]])
596 } else {
597 panic("Switched cargo?")
598 }
599
600 }
601 if addr[Cloaks] == 1 && prev[Cloaks] == 0 {
602 // TODO: Dump cloaks, convert from cargo?
603 line += "Buy a Cloak"
604 }
605 if addr[Edens] > prev[Edens] {
606 line += fmt.Sprint("Buy ", addr[Edens] - prev[Edens], " Eden Warp Units")
607 }
608 if addr[BuyShields] == 1 && prev[BuyShields] == 0 {
609 line += fmt.Sprint("Buy ", *batteries, " Shield Batterys")
610 }
611 if addr[BuyFighters] == 1 && prev[BuyFighters] == 0 {
612 line += fmt.Sprint("Buy ", *drones, " Fighter Drones")
613 }
614 if line == "" {
615 line = fmt.Sprint(prev, " -> ", addr)
616 }
617 description = append(description, fmt.Sprintf("%13v ", Commas(table[index].value)) + line)
618 }
619 return
620 }
621
622 // (Example of a use case for generics in Go)
623 func IndexPlanets(m *map[string]Planet, start_at int) (map[string]int, []string) {
624 e2i := make(map[string]int, len(*m)+start_at)
625 i2e := make([]string, len(*m)+start_at)
626 i := start_at
627 for e := range *m {
628 e2i[e] = i
629 i2e[i] = e
630 i++
631 }
632 return e2i, i2e
633 }
634 func IndexCommodities(m *map[string]Commodity, start_at int) (map[string]int, []string) {
635 e2i := make(map[string]int, len(*m)+start_at)
636 i2e := make([]string, len(*m)+start_at)
637 i := start_at
638 for e := range *m {
639 e2i[e] = i
640 i2e[i] = e
641 i++
642 }
643 return e2i, i2e
644 }
645
646 func main() {
647 flag.Parse()
648 data := ReadData()
649 if *drone_price > 0 {
650 temp := data.Commodities["Fighter Drones"]
651 temp.BasePrice = *drone_price
652 data.Commodities["Fighter Drones"] = temp
653 }
654 if *battery_price > 0 {
655 temp := data.Commodities["Shield Batterys"]
656 temp.BasePrice = *battery_price
657 data.Commodities["Shield Batterys"] = temp
658 }
659 data.p2i, data.i2p = IndexPlanets(&data.Planets, 0)
660 data.c2i, data.i2c = IndexCommodities(&data.Commodities, 1)
661 dims := DimensionSizes(data)
662 table := InitializeStateTable(data, dims)
663 FillStateTable1(data, dims, table)
664 best := FindBestState(data, dims, table)
665 if best == -1 {
666 print("Cannot acheive success criteria\n")
667 } else {
668 description := DescribePath(data, dims, table, best)
669 for i := len(description) - 1; i >= 0; i-- {
670 fmt.Println(description[i])
671 }
672 }
673 }