]> git.scottworley.com Git - planeteer/blob - planeteer.go
Cost of --end
[planeteer] / planeteer.go
1 /* Planeteer: Give trade route advice for Planets: The Exploration of Space
2 * Copyright (C) 2011 Scott Worley <sworley@chkno.net>
3 *
4 * This program is free software: you can redistribute it and/or modify
5 * it under the terms of the GNU Affero General Public License as
6 * published by the Free Software Foundation, either version 3 of the
7 * License, or (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU Affero General Public License for more details.
13 *
14 * You should have received a copy of the GNU Affero General Public License
15 * along with this program. If not, see <http://www.gnu.org/licenses/>.
16 */
17
18 package main
19
20 import "flag"
21 import "fmt"
22 import "encoding/json"
23 import "os"
24 import "runtime/pprof"
25 import "strings"
26
27 var funds = flag.Int("funds", 0,
28 "Starting funds")
29
30 var start = flag.String("start", "",
31 "The planet to start at")
32
33 var flight_plan_string = flag.String("flight_plan", "",
34 "Your hyper-holes for the day, comma-separated.")
35
36 var end_string = flag.String("end", "",
37 "A comma-separated list of acceptable ending planets.")
38
39 var planet_data_file = flag.String("planet_data_file", "planet-data",
40 "The file to read planet data from")
41
42 var fuel = flag.Int("fuel", 16, "Hyper Jump power left")
43
44 var hold = flag.Int("hold", 300, "Size of your cargo hold")
45
46 var start_hold = flag.String("start_hold", "", "Start with a hold full of cargo")
47
48 var start_edens = flag.Int("start_edens", 0,
49 "How many Eden Warp Units are you starting with?")
50
51 var end_edens = flag.Int("end_edens", 0,
52 "How many Eden Warp Units would you like to keep (not use)?")
53
54 var cloak = flag.Bool("cloak", false,
55 "Make sure to end with a Device of Cloaking")
56
57 var drones = flag.Int("drones", 0, "Buy this many Fighter Drones")
58
59 var batteries = flag.Int("batteries", 0, "Buy this many Shield Batterys")
60
61 var drone_price = flag.Int("drone_price", 0, "Today's Fighter Drone price")
62
63 var battery_price = flag.Int("battery_price", 0, "Today's Shield Battery price")
64
65 var visit_string = flag.String("visit", "",
66 "A comma-separated list of planets to make sure to visit")
67
68 var tomorrow_weight = flag.Float64("tomorrow_weight", 1.0,
69 "Weight for the expected value of tomorrow's trading. 0.0 - 1.0")
70
71 var cpuprofile = flag.String("cpuprofile", "", "write cpu profile to file")
72
73 var visit_cache []string
74
75 func visit() []string {
76 if visit_cache == nil {
77 if *visit_string == "" {
78 return nil
79 }
80 visit_cache = strings.Split(*visit_string, ",")
81 }
82 return visit_cache
83 }
84
85 var flight_plan_cache []string
86
87 func flight_plan() []string {
88 if flight_plan_cache == nil {
89 if *flight_plan_string == "" {
90 return nil
91 }
92 flight_plan_cache = strings.Split(*flight_plan_string, ",")
93 }
94 return flight_plan_cache
95 }
96
97 var end_cache map[string]bool
98
99 func end() map[string]bool {
100 if end_cache == nil {
101 if *end_string == "" {
102 return nil
103 }
104 m := make(map[string]bool)
105 for _, p := range strings.Split(*end_string, ",") {
106 m[p] = true
107 }
108 end_cache = m
109 }
110 return end_cache
111 }
112
113 type Commodity struct {
114 BasePrice int
115 CanSell bool
116 Limit int
117 }
118 type Planet struct {
119 BeaconOn bool
120 Private bool
121 TomorrowValue int
122 /* Use relative prices rather than absolute prices because you
123 can get relative prices without traveling to each planet. */
124 RelativePrices map[string]int
125 }
126 type planet_data struct {
127 Commodities map[string]Commodity
128 Planets map[string]Planet
129 p2i, c2i map[string]int // Generated; not read from file
130 i2p, i2c []string // Generated; not read from file
131 }
132
133 func ReadData() (data planet_data) {
134 f, err := os.Open(*planet_data_file)
135 if err != nil {
136 panic(err)
137 }
138 defer f.Close()
139 err = json.NewDecoder(f).Decode(&data)
140 if err != nil {
141 panic(err)
142 }
143 return
144 }
145
146 /* This program operates by filling in a state table representing the best
147 * possible trips you could make; the ones that makes you the most money.
148 * This is feasible because we don't look at all the possible trips.
149 * We define a list of things that are germane to this game and then only
150 * consider the best outcome in each possible game state.
151 *
152 * Each cell in the table represents a state in the game. In each cell,
153 * we track two things: 1. the most money you could possibly have while in
154 * that state and 2. one possible way to get into that state with that
155 * amount of money.
156 *
157 * A basic analysis can be done with a two-dimensional table: location and
158 * fuel. planeteer-1.0 used this two-dimensional table. This version
159 * adds features mostly by adding dimensions to this table.
160 *
161 * Note that the sizes of each dimension are data driven. Many dimensions
162 * collapse to one possible value (ie, disappear) if the corresponding
163 * feature is not enabled.
164 *
165 * The order of the dimensions in the list of constants below determines
166 * their layout in RAM. The cargo-based 'dimensions' are not completely
167 * independent -- some combinations are illegal and not used. They are
168 * handled as three dimensions rather than one for simplicity. Placing
169 * these dimensions first causes the unused cells in the table to be
170 * grouped together in large blocks. This keeps them from polluting
171 * cache lines, and if they are large enough, allows the memory manager
172 * to swap out entire pages.
173 *
174 * If the table gets too big to fit in RAM:
175 * * Combine the Edens, Cloaks, and UnusedCargo dimensions. Of the
176 * 24 combinations, only 15 are legal: a 38% savings.
177 * * Reduce the size of the Fuel dimension to 3. We only ever look
178 * backwards 2 units, so just rotate the logical values through
179 * the same 3 physical addresses. This is good for an 82% savings.
180 * * Reduce the size of the Edens dimension from 3 to 2, for the
181 * same reasons as Fuel above. 33% savings.
182 * * Buy more ram. (Just sayin'. It's cheaper than you think.)
183 *
184 */
185
186 // The official list of dimensions:
187 const (
188 // Name Num Size Description
189 Edens = iota // 1 3 # of Eden warp units (0 - 2 typically)
190 Cloaks // 2 1-2 # of Devices of Cloaking (0 or 1)
191 UnusedCargo // 3 4 # of unused cargo spaces (0 - 3 typically)
192 Fuel // 4 17 Hyper jump power left (0 - 16)
193 Location // 5 26 Location (which planet)
194 Hold // 6 15 Cargo bay contents (a *Commodity or nil)
195 Traded // 7 2 Traded yet?
196 BuyFighters // 8 1-2 Errand: Buy fighter drones
197 BuyShields // 9 1-2 Errand: Buy shield batteries
198 Visit // 10 1-2**N Visit: Stop by these N planets in the route
199
200 NumDimensions
201 )
202
203 func bint(b bool) int {
204 if b {
205 return 1
206 }
207 return 0
208 }
209
210 func DimensionSizes(data planet_data) []int {
211 eden_capacity := data.Commodities["Eden Warp Units"].Limit
212 if *start_edens > eden_capacity {
213 eden_capacity = *start_edens
214 }
215 cloak_capacity := bint(*cloak)
216 dims := make([]int, NumDimensions)
217 dims[Edens] = eden_capacity + 1
218 dims[Cloaks] = cloak_capacity + 1
219 dims[UnusedCargo] = eden_capacity + cloak_capacity + 1
220 dims[Fuel] = *fuel + 1
221 dims[Location] = len(data.Planets)
222 dims[Hold] = len(data.Commodities) + 1
223 dims[Traded] = 2
224 dims[BuyFighters] = bint(*drones > 0) + 1
225 dims[BuyShields] = bint(*batteries > 0) + 1
226 dims[Visit] = 1 << uint(len(visit()))
227
228 // Remind myself to add a line above when adding new dimensions
229 for i, dim := range dims {
230 if dim < 1 {
231 panic(i)
232 }
233 }
234 return dims
235 }
236
237 func StateTableSize(dims []int) int {
238 product := 1
239 for _, size := range dims {
240 product *= size
241 }
242 return product
243 }
244
245 type State struct {
246 value, from int32
247 }
248
249 const (
250 FROM_ROOT = -2147483647 + iota
251 FROM_UNINITIALIZED
252 VALUE_UNINITIALIZED
253 VALUE_BEING_EVALUATED
254 VALUE_RUBISH
255 )
256
257 func EncodeIndex(dims, addr []int) int32 {
258 index := addr[0]
259 if addr[0] > dims[0] {
260 panic(0)
261 }
262 for i := 1; i < NumDimensions; i++ {
263 if addr[i] < 0 || addr[i] >= dims[i] {
264 panic(i)
265 }
266 index = index*dims[i] + addr[i]
267 }
268 return int32(index)
269 }
270
271 func DecodeIndex(dims []int, index int32) []int {
272 addr := make([]int, NumDimensions)
273 for i := NumDimensions - 1; i > 0; i-- {
274 addr[i] = int(index) % dims[i]
275 index /= int32(dims[i])
276 }
277 addr[0] = int(index)
278 return addr
279 }
280
281 func CreateStateTable(data planet_data, dims []int) []State {
282 table := make([]State, StateTableSize(dims))
283 for i := range table {
284 table[i].value = VALUE_UNINITIALIZED
285 table[i].from = FROM_UNINITIALIZED
286 }
287
288 addr := make([]int, NumDimensions)
289 addr[Fuel] = *fuel
290 addr[Edens] = *start_edens
291 addr[Location] = data.p2i[*start]
292 if *start_hold != "" {
293 addr[Hold] = data.c2i[*start_hold]
294 }
295 start_index := EncodeIndex(dims, addr)
296 table[start_index].value = int32(*funds)
297 table[start_index].from = FROM_ROOT
298
299 return table
300 }
301
302 /* CellValue fills in the one cell at address addr by looking at all
303 * the possible ways to reach this cell and selecting the best one. */
304
305 func Consider(data planet_data, dims []int, table []State, there []int, value_difference int, best_value *int32, best_source []int) {
306 there_value := CellValue(data, dims, table, there)
307 if value_difference < 0 && int32(-value_difference) > there_value {
308 /* Can't afford this transition */
309 return
310 }
311 possible_value := there_value + int32(value_difference)
312 if possible_value > *best_value {
313 *best_value = possible_value
314 copy(best_source, there)
315 }
316 }
317
318 var cell_filled_count int
319
320 func CellValue(data planet_data, dims []int, table []State, addr []int) int32 {
321 my_index := EncodeIndex(dims, addr)
322 if table[my_index].value == VALUE_BEING_EVALUATED {
323 panic("Circular dependency")
324 }
325 if table[my_index].value != VALUE_UNINITIALIZED {
326 return table[my_index].value
327 }
328 table[my_index].value = VALUE_BEING_EVALUATED
329
330 best_value := int32(VALUE_RUBISH)
331 best_source := make([]int, NumDimensions)
332 other := make([]int, NumDimensions)
333 copy(other, addr)
334 planet := data.i2p[addr[Location]]
335
336 /* Travel here */
337 if addr[Traded] == 0 { /* Can't have traded immediately after traveling. */
338 other[Traded] = 1 /* Travel from states that have done trading. */
339
340 /* Travel here via a 2-fuel unit jump */
341 if addr[Fuel]+2 < dims[Fuel] {
342 other[Fuel] = addr[Fuel] + 2
343 hole_index := (dims[Fuel] - 1) - (addr[Fuel] + 2)
344 if hole_index >= len(flight_plan()) || addr[Location] != data.p2i[flight_plan()[hole_index]] {
345 for other[Location] = 0; other[Location] < dims[Location]; other[Location]++ {
346 if data.Planets[data.i2p[addr[Location]]].BeaconOn {
347 Consider(data, dims, table, other, 0, &best_value, best_source)
348 }
349 }
350 }
351 other[Location] = addr[Location]
352 other[Fuel] = addr[Fuel]
353 }
354
355 /* Travel here via a 1-fuel unit jump (a hyper hole) */
356 if addr[Fuel]+1 < dims[Fuel] {
357 hole_index := (dims[Fuel] - 1) - (addr[Fuel] + 1)
358 if hole_index < len(flight_plan()) && addr[Location] == data.p2i[flight_plan()[hole_index]] {
359 other[Fuel] = addr[Fuel] + 1
360 for other[Location] = 0; other[Location] < dims[Location]; other[Location]++ {
361 Consider(data, dims, table, other, 0, &best_value, best_source)
362 }
363 other[Location] = addr[Location]
364 other[Fuel] = addr[Fuel]
365 }
366 }
367
368 /* Travel here via Eden Warp Unit */
369 if addr[Edens]+1 < dims[Edens] && addr[UnusedCargo] > 0 {
370 _, available := data.Planets[data.i2p[addr[Location]]].RelativePrices["Eden Warp Units"]
371 if !available {
372 other[Edens] = addr[Edens] + 1
373 if other[Hold] != 0 {
374 other[UnusedCargo] = addr[UnusedCargo] - 1
375 }
376 for other[Location] = 0; other[Location] < dims[Location]; other[Location]++ {
377 Consider(data, dims, table, other, 0, &best_value, best_source)
378 }
379 other[Location] = addr[Location]
380 other[UnusedCargo] = addr[UnusedCargo]
381 other[Edens] = addr[Edens]
382 }
383 }
384 other[Traded] = addr[Traded]
385 }
386
387 /* Trade */
388 if addr[Traded] == 1 {
389 other[Traded] = 0
390
391 /* Consider not trading */
392 Consider(data, dims, table, other, 0, &best_value, best_source)
393
394 if !data.Planets[data.i2p[addr[Location]]].Private {
395
396 /* Sell */
397 if addr[Hold] == 0 && addr[UnusedCargo] == 0 {
398 for other[Hold] = 0; other[Hold] < dims[Hold]; other[Hold]++ {
399 commodity := data.i2c[other[Hold]]
400 if !data.Commodities[commodity].CanSell {
401 continue
402 }
403 relative_price, available := data.Planets[planet].RelativePrices[commodity]
404 if !available {
405 // TODO: Dump cargo
406 continue
407 }
408 base_price := data.Commodities[commodity].BasePrice
409 absolute_price := float64(base_price) * float64(relative_price) / 100.0
410 sell_price := int(absolute_price * 0.9)
411
412 for other[UnusedCargo] = 0; other[UnusedCargo] < dims[UnusedCargo]; other[UnusedCargo]++ {
413 quantity := *hold - (other[UnusedCargo] + other[Cloaks] + other[Edens])
414 sale_value := quantity * sell_price
415 Consider(data, dims, table, other, sale_value, &best_value, best_source)
416 }
417 }
418 other[UnusedCargo] = addr[UnusedCargo]
419 other[Hold] = addr[Hold]
420 }
421
422 /* Buy */
423 other[Traded] = addr[Traded] /* Buy after selling */
424 if addr[Hold] != 0 {
425 commodity := data.i2c[addr[Hold]]
426 if data.Commodities[commodity].CanSell {
427 relative_price, available := data.Planets[planet].RelativePrices[commodity]
428 if available {
429 base_price := data.Commodities[commodity].BasePrice
430 absolute_price := int(float64(base_price) * float64(relative_price) / 100.0)
431 quantity := *hold - (addr[UnusedCargo] + addr[Cloaks] + addr[Edens])
432 total_price := quantity * absolute_price
433 other[Hold] = 0
434 other[UnusedCargo] = 0
435 Consider(data, dims, table, other, -total_price, &best_value, best_source)
436 other[UnusedCargo] = addr[UnusedCargo]
437 other[Hold] = addr[Hold]
438 }
439 }
440 }
441 }
442 other[Traded] = addr[Traded]
443 }
444
445 /* Buy a Device of Cloaking */
446 if addr[Cloaks] == 1 && addr[UnusedCargo] < dims[UnusedCargo]-1 {
447 relative_price, available := data.Planets[data.i2p[addr[Location]]].RelativePrices["Device Of Cloakings"]
448 if available {
449 absolute_price := int(float64(data.Commodities["Device Of Cloakings"].BasePrice) * float64(relative_price) / 100.0)
450 other[Cloaks] = 0
451 if other[Hold] != 0 {
452 other[UnusedCargo] = addr[UnusedCargo] + 1
453 }
454 Consider(data, dims, table, other, -absolute_price, &best_value, best_source)
455 other[UnusedCargo] = addr[UnusedCargo]
456 other[Cloaks] = addr[Cloaks]
457 }
458 }
459
460 /* Buy Fighter Drones */
461 if addr[BuyFighters] == 1 {
462 relative_price, available := data.Planets[data.i2p[addr[Location]]].RelativePrices["Fighter Drones"]
463 if available {
464 absolute_price := int(float64(data.Commodities["Fighter Drones"].BasePrice) * float64(relative_price) / 100.0)
465 other[BuyFighters] = 0
466 Consider(data, dims, table, other, -absolute_price**drones, &best_value, best_source)
467 other[BuyFighters] = addr[BuyFighters]
468 }
469 }
470
471 /* Buy Shield Batteries */
472 if addr[BuyShields] == 1 {
473 relative_price, available := data.Planets[data.i2p[addr[Location]]].RelativePrices["Shield Batterys"]
474 if available {
475 absolute_price := int(float64(data.Commodities["Shield Batterys"].BasePrice) * float64(relative_price) / 100.0)
476 other[BuyShields] = 0
477 Consider(data, dims, table, other, -absolute_price**batteries, &best_value, best_source)
478 other[BuyShields] = addr[BuyShields]
479 }
480 }
481
482 /* Visit this planet */
483 for i := uint(0); i < uint(len(visit())); i++ {
484 if addr[Visit]&(1<<i) != 0 && visit()[i] == data.i2p[addr[Location]] {
485 other[Visit] = addr[Visit] & ^(1 << i)
486 Consider(data, dims, table, other, 0, &best_value, best_source)
487 }
488 }
489 other[Visit] = addr[Visit]
490
491 /* Buy Eden warp units */
492 eden_limit := data.Commodities["Eden Warp Units"].Limit
493 if addr[Edens] > 0 && addr[Edens] <= eden_limit {
494 relative_price, available := data.Planets[data.i2p[addr[Location]]].RelativePrices["Eden Warp Units"]
495 if available {
496 absolute_price := int(float64(data.Commodities["Eden Warp Units"].BasePrice) * float64(relative_price) / 100.0)
497 for quantity := addr[Edens]; quantity > 0; quantity-- {
498 other[Edens] = addr[Edens] - quantity
499 if addr[Hold] != 0 {
500 other[UnusedCargo] = addr[UnusedCargo] + quantity
501 }
502 if other[UnusedCargo] < dims[UnusedCargo] {
503 Consider(data, dims, table, other, -absolute_price*quantity, &best_value, best_source)
504 }
505 }
506 other[Edens] = addr[Edens]
507 other[UnusedCargo] = addr[UnusedCargo]
508 }
509 }
510
511 // Check that we didn't lose track of any temporary modifications to other.
512 for i := 0; i < NumDimensions; i++ {
513 if addr[i] != other[i] {
514 panic(i)
515 }
516 }
517
518 // Sanity check: This cell was in state BEING_EVALUATED
519 // the whole time that it was being evaluated.
520 if table[my_index].value != VALUE_BEING_EVALUATED {
521 panic(my_index)
522 }
523
524 // Record our findings
525 table[my_index].value = best_value
526 table[my_index].from = EncodeIndex(dims, best_source)
527
528 // UI: Progress bar
529 cell_filled_count++
530 if cell_filled_count&0xfff == 0 {
531 print(fmt.Sprintf("\r%3.1f%%", 100*float64(cell_filled_count)/float64(StateTableSize(dims))))
532 }
533
534 return table[my_index].value
535 }
536
537 func FinalState(dims []int) []int {
538 addr := make([]int, NumDimensions)
539 addr[Edens] = *end_edens
540 addr[Cloaks] = dims[Cloaks] - 1
541 addr[BuyFighters] = dims[BuyFighters] - 1
542 addr[BuyShields] = dims[BuyShields] - 1
543 addr[Visit] = dims[Visit] - 1
544 addr[Traded] = 1
545 addr[Hold] = 0
546 addr[UnusedCargo] = 0
547 // Fuel and Location are determined by FindBestState
548 return addr
549 }
550
551 func FindBestState(data planet_data, dims []int, table []State, addr []int) int32 {
552 max_index := int32(-1)
553 max_value := 0.0
554 max_fuel := 1
555 if *fuel == 0 {
556 max_fuel = 0
557 }
558 for addr[Fuel] = 0; addr[Fuel] <= max_fuel; addr[Fuel]++ {
559 for addr[Location] = 0; addr[Location] < dims[Location]; addr[Location]++ {
560 planet := data.i2p[addr[Location]]
561 if len(end()) == 0 || end()[planet] {
562 index := EncodeIndex(dims, addr)
563 today_value := CellValue(data, dims, table, addr)
564 tomorrow_value := *tomorrow_weight * float64(*hold+data.Planets[planet].TomorrowValue)
565 value := float64(today_value) + tomorrow_value
566 if value > max_value {
567 max_value = value
568 max_index = index
569 }
570 }
571 }
572 }
573 return max_index
574 }
575
576 func Commas(n int32) (s string) {
577 if n < 0 {
578 panic(n)
579 }
580 r := n % 1000
581 n /= 1000
582 for n > 0 {
583 s = fmt.Sprintf(",%03d", r) + s
584 r = n % 1000
585 n /= 1000
586 }
587 s = fmt.Sprint(r) + s
588 return
589 }
590
591 func DescribePath(data planet_data, dims []int, table []State, start int32) (description []string) {
592 for index := start; table[index].from > FROM_ROOT; index = table[index].from {
593 if table[index].from == FROM_UNINITIALIZED {
594 panic(index)
595 }
596 var line string
597 addr := DecodeIndex(dims, index)
598 prev := DecodeIndex(dims, table[index].from)
599 if addr[Fuel] != prev[Fuel] {
600 from := data.i2p[prev[Location]]
601 to := data.i2p[addr[Location]]
602 line += fmt.Sprintf("Jump from %v to %v (%v hyper jump units)", from, to, prev[Fuel]-addr[Fuel])
603 }
604 if addr[Edens] == prev[Edens]-1 {
605 from := data.i2p[prev[Location]]
606 to := data.i2p[addr[Location]]
607 line += fmt.Sprintf("Eden warp from %v to %v", from, to)
608 }
609 if addr[Hold] != prev[Hold] {
610 if addr[Hold] == 0 {
611 quantity := *hold - (prev[UnusedCargo] + prev[Edens] + prev[Cloaks])
612 line += fmt.Sprintf("Sell %v %v", quantity, data.i2c[prev[Hold]])
613 } else if prev[Hold] == 0 {
614 quantity := *hold - (addr[UnusedCargo] + addr[Edens] + addr[Cloaks])
615 line += fmt.Sprintf("Buy %v %v", quantity, data.i2c[addr[Hold]])
616 } else {
617 panic("Switched cargo?")
618 }
619
620 }
621 if addr[Cloaks] == 1 && prev[Cloaks] == 0 {
622 // TODO: Dump cloaks, convert from cargo?
623 line += "Buy a Cloak"
624 }
625 if addr[Edens] > prev[Edens] {
626 line += fmt.Sprint("Buy ", addr[Edens]-prev[Edens], " Eden Warp Units")
627 }
628 if addr[BuyShields] == 1 && prev[BuyShields] == 0 {
629 line += fmt.Sprint("Buy ", *batteries, " Shield Batterys")
630 }
631 if addr[BuyFighters] == 1 && prev[BuyFighters] == 0 {
632 line += fmt.Sprint("Buy ", *drones, " Fighter Drones")
633 }
634 if addr[Visit] != prev[Visit] {
635 // TODO: verify that the bit chat changed is addr[Location]
636 line += fmt.Sprint("Visit ", data.i2p[addr[Location]])
637 }
638 if line == "" && addr[Hold] == prev[Hold] && addr[Traded] != prev[Traded] {
639 // The Traded dimension is for housekeeping. It doesn't directly
640 // correspond to in-game actions, so don't report transitions.
641 continue
642 }
643 if line == "" {
644 line = fmt.Sprint(prev, " -> ", addr)
645 }
646 description = append(description, fmt.Sprintf("%13v ", Commas(table[index].value))+line)
647 }
648 return
649 }
650
651 // (Example of a use case for generics in Go)
652 func IndexPlanets(m *map[string]Planet, start_at int) (map[string]int, []string) {
653 e2i := make(map[string]int, len(*m)+start_at)
654 i2e := make([]string, len(*m)+start_at)
655 i := start_at
656 for e := range *m {
657 e2i[e] = i
658 i2e[i] = e
659 i++
660 }
661 return e2i, i2e
662 }
663 func IndexCommodities(m *map[string]Commodity, start_at int) (map[string]int, []string) {
664 e2i := make(map[string]int, len(*m)+start_at)
665 i2e := make([]string, len(*m)+start_at)
666 i := start_at
667 for e := range *m {
668 e2i[e] = i
669 i2e[i] = e
670 i++
671 }
672 return e2i, i2e
673 }
674
675 func main() {
676 flag.Parse()
677 if *start == "" || *funds == 0 {
678 print("--start and --funds are required. --help for more\n")
679 return
680 }
681 if *cpuprofile != "" {
682 f, err := os.Create(*cpuprofile)
683 if err != nil {
684 panic(err)
685 }
686 pprof.StartCPUProfile(f)
687 defer pprof.StopCPUProfile()
688 }
689 data := ReadData()
690 if *drone_price > 0 {
691 temp := data.Commodities["Fighter Drones"]
692 temp.BasePrice = *drone_price
693 data.Commodities["Fighter Drones"] = temp
694 }
695 if *battery_price > 0 {
696 temp := data.Commodities["Shield Batterys"]
697 temp.BasePrice = *battery_price
698 data.Commodities["Shield Batterys"] = temp
699 }
700 data.p2i, data.i2p = IndexPlanets(&data.Planets, 0)
701 data.c2i, data.i2c = IndexCommodities(&data.Commodities, 1)
702 dims := DimensionSizes(data)
703 table := CreateStateTable(data, dims)
704 final_state := FinalState(dims)
705 best := FindBestState(data, dims, table, final_state)
706 print("\n")
707 if best == -1 {
708 print("Cannot acheive success criteria\n")
709 return
710 }
711 description := DescribePath(data, dims, table, best)
712 for i := len(description) - 1; i >= 0; i-- {
713 fmt.Println(description[i])
714 }
715
716 // Ok, that was the important stuff. Now some fun stuff.
717
718 // Calculate total cost of fighters and shields
719 if *drones > 0 || *batteries > 0 {
720 fmt.Println()
721 }
722 if *drones > 0 {
723 final_state[BuyFighters] = 0
724 alt_best := FindBestState(data, dims, table, final_state)
725 cost := table[alt_best].value - table[best].value
726 fmt.Println("\rDrones were", float64(cost)/float64(*drones), "each")
727 final_state[BuyFighters] = 1
728 }
729 if *batteries > 0 {
730 final_state[BuyShields] = 0
731 alt_best := FindBestState(data, dims, table, final_state)
732 cost := table[alt_best].value - table[best].value
733 fmt.Println("\rBatteries were", float64(cost)/float64(*batteries), "each")
734 final_state[BuyShields] = 1
735 }
736
737 // Use extra eden warps / cost of --end_edends
738 if *end_edens > 0 {
739 fmt.Println()
740 }
741 for extra_edens := 1; extra_edens <= *end_edens; extra_edens++ {
742 final_state[Edens] = *end_edens - extra_edens
743 alt_best := FindBestState(data, dims, table, final_state)
744 extra_funds := table[alt_best].value - table[best].value
745 fmt.Println("\rUse", extra_edens, "extra edens, make an extra",
746 Commas(extra_funds), "(",
747 Commas(extra_funds/int32(extra_edens)), "per eden)")
748 }
749 final_state[Edens] = *end_edens
750
751 // Cost of visiting places
752 if dims[Visit] > 1 {
753 fmt.Println()
754 }
755 for i := uint(0); i < uint(len(visit())); i++ {
756 all_bits := dims[Visit] - 1
757 final_state[Visit] = all_bits & ^(1 << i)
758 alt_best := FindBestState(data, dims, table, final_state)
759 cost := table[alt_best].value - table[best].value
760 fmt.Printf("\r%11v Cost to visit %v\n", Commas(cost), visit()[i])
761 }
762 final_state[Visit] = dims[Visit] - 1
763
764 // Cost of --end
765 if len(end()) > 0 {
766 save_end_string := *end_string
767 *end_string = ""
768 end_cache = nil
769 alt_best := FindBestState(data, dims, table, final_state)
770 cost := table[alt_best].value - table[best].value
771 fmt.Printf("\r\n%11v Cost of --end %v\n", Commas(cost), save_end_string)
772 *end_string = save_end_string
773 }
774
775 }