/* Planeteer: Give trade route advice for Planets: The Exploration of Space * Copyright (C) 2011 Scott Worley * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU Affero General Public License as * published by the Free Software Foundation, either version 3 of the * License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Affero General Public License for more details. * * You should have received a copy of the GNU Affero General Public License * along with this program. If not, see . */ package main import "flag" import "fmt" import "encoding/json" import "os" import "runtime/pprof" import "strings" var funds = flag.Int("funds", 0, "Starting funds") var start = flag.String("start", "", "The planet to start at") var flight_plan_string = flag.String("flight_plan", "", "Your hyper-holes for the day, comma-separated.") var end_string = flag.String("end", "", "A comma-separated list of acceptable ending planets.") var planet_data_file = flag.String("planet_data_file", "planet-data", "The file to read planet data from") var fuel = flag.Int("fuel", 16, "Hyper Jump power left") var hold = flag.Int("hold", 300, "Size of your cargo hold") var start_hold = flag.String("start_hold", "", "Start with a hold full of cargo") var start_edens = flag.Int("start_edens", 0, "How many Eden Warp Units are you starting with?") var end_edens = flag.Int("end_edens", 0, "How many Eden Warp Units would you like to keep (not use)?") var cloak = flag.Bool("cloak", false, "Make sure to end with a Device of Cloaking") var drones = flag.Int("drones", 0, "Buy this many Fighter Drones") var batteries = flag.Int("batteries", 0, "Buy this many Shield Batterys") var drone_price = flag.Int("drone_price", 0, "Today's Fighter Drone price") var battery_price = flag.Int("battery_price", 0, "Today's Shield Battery price") var visit_string = flag.String("visit", "", "A comma-separated list of planets to make sure to visit") var tomorrow_weight = flag.Float64("tomorrow_weight", 1.0, "Weight for the expected value of tomorrow's trading. 0.0 - 1.0") var cpuprofile = flag.String("cpuprofile", "", "write cpu profile to file") var visit_cache []string func visit() []string { if visit_cache == nil { if *visit_string == "" { return nil } visit_cache = strings.Split(*visit_string, ",") } return visit_cache } var flight_plan_cache []string func flight_plan() []string { if flight_plan_cache == nil { if *flight_plan_string == "" { return nil } flight_plan_cache = strings.Split(*flight_plan_string, ",") } return flight_plan_cache } var end_cache map[string]bool func end() map[string]bool { if end_cache == nil { if *end_string == "" { return nil } m := make(map[string]bool) for _, p := range strings.Split(*end_string, ",") { m[p] = true } end_cache = m } return end_cache } type Commodity struct { BasePrice int CanSell bool Limit int } type Planet struct { BeaconOn bool Private bool TomorrowValue int /* Use relative prices rather than absolute prices because you can get relative prices without traveling to each planet. */ RelativePrices map[string]int } type planet_data struct { Commodities map[string]Commodity Planets map[string]Planet p2i, c2i map[string]int // Generated; not read from file i2p, i2c []string // Generated; not read from file } func ReadData() (data planet_data) { f, err := os.Open(*planet_data_file) if err != nil { panic(err) } defer f.Close() err = json.NewDecoder(f).Decode(&data) if err != nil { panic(err) } return } /* This program operates by filling in a state table representing the best * possible trips you could make; the ones that makes you the most money. * This is feasible because we don't look at all the possible trips. * We define a list of things that are germane to this game and then only * consider the best outcome in each possible game state. * * Each cell in the table represents a state in the game. In each cell, * we track two things: 1. the most money you could possibly have while in * that state and 2. one possible way to get into that state with that * amount of money. * * A basic analysis can be done with a two-dimensional table: location and * fuel. planeteer-1.0 used this two-dimensional table. This version * adds features mostly by adding dimensions to this table. * * Note that the sizes of each dimension are data driven. Many dimensions * collapse to one possible value (ie, disappear) if the corresponding * feature is not enabled. * * The order of the dimensions in the list of constants below determines * their layout in RAM. The cargo-based 'dimensions' are not completely * independent -- some combinations are illegal and not used. They are * handled as three dimensions rather than one for simplicity. Placing * these dimensions first causes the unused cells in the table to be * grouped together in large blocks. This keeps them from polluting * cache lines, and if they are large enough, allows the memory manager * to swap out entire pages. * * If the table gets too big to fit in RAM: * * Combine the Edens, Cloaks, and UnusedCargo dimensions. Of the * 24 combinations, only 15 are legal: a 38% savings. * * Reduce the size of the Fuel dimension to 3. We only ever look * backwards 2 units, so just rotate the logical values through * the same 3 physical addresses. This is good for an 82% savings. * * Reduce the size of the Edens dimension from 3 to 2, for the * same reasons as Fuel above. 33% savings. * * Buy more ram. (Just sayin'. It's cheaper than you think.) * */ // The official list of dimensions: const ( // Name Num Size Description Edens = iota // 1 3 # of Eden warp units (0 - 2 typically) Cloaks // 2 1-2 # of Devices of Cloaking (0 or 1) UnusedCargo // 3 4 # of unused cargo spaces (0 - 3 typically) Fuel // 4 17 Hyper jump power left (0 - 16) Location // 5 26 Location (which planet) Hold // 6 15 Cargo bay contents (a *Commodity or nil) Traded // 7 2 Traded yet? BuyFighters // 8 1-2 Errand: Buy fighter drones BuyShields // 9 1-2 Errand: Buy shield batteries Visit // 10 1-2**N Visit: Stop by these N planets in the route NumDimensions ) func bint(b bool) int { if b { return 1 } return 0 } func DimensionSizes(data planet_data) []int { eden_capacity := data.Commodities["Eden Warp Units"].Limit if *start_edens > eden_capacity { eden_capacity = *start_edens } cloak_capacity := bint(*cloak) dims := make([]int, NumDimensions) dims[Edens] = eden_capacity + 1 dims[Cloaks] = cloak_capacity + 1 dims[UnusedCargo] = eden_capacity + cloak_capacity + 1 dims[Fuel] = *fuel + 1 dims[Location] = len(data.Planets) dims[Hold] = len(data.Commodities) + 1 dims[Traded] = 2 dims[BuyFighters] = bint(*drones > 0) + 1 dims[BuyShields] = bint(*batteries > 0) + 1 dims[Visit] = 1 << uint(len(visit())) // Remind myself to add a line above when adding new dimensions for i, dim := range dims { if dim < 1 { panic(i) } } return dims } func StateTableSize(dims []int) int { product := 1 for _, size := range dims { product *= size } return product } type State struct { value, from int32 } const ( FROM_ROOT = -2147483647 + iota FROM_UNINITIALIZED VALUE_UNINITIALIZED VALUE_BEING_EVALUATED VALUE_RUBISH ) func EncodeIndex(dims, addr []int) int32 { index := addr[0] if addr[0] > dims[0] { panic(0) } for i := 1; i < NumDimensions; i++ { if addr[i] < 0 || addr[i] >= dims[i] { panic(i) } index = index*dims[i] + addr[i] } return int32(index) } func DecodeIndex(dims []int, index int32) []int { addr := make([]int, NumDimensions) for i := NumDimensions - 1; i > 0; i-- { addr[i] = int(index) % dims[i] index /= int32(dims[i]) } addr[0] = int(index) return addr } func CreateStateTable(data planet_data, dims []int) []State { table := make([]State, StateTableSize(dims)) for i := range table { table[i].value = VALUE_UNINITIALIZED table[i].from = FROM_UNINITIALIZED } addr := make([]int, NumDimensions) addr[Fuel] = *fuel addr[Edens] = *start_edens addr[Location] = data.p2i[*start] if *start_hold != "" { addr[Hold] = data.c2i[*start_hold] } start_index := EncodeIndex(dims, addr) table[start_index].value = int32(*funds) table[start_index].from = FROM_ROOT return table } /* CellValue fills in the one cell at address addr by looking at all * the possible ways to reach this cell and selecting the best one. */ func Consider(data planet_data, dims []int, table []State, there []int, value_difference int, best_value *int32, best_source []int) { there_value := CellValue(data, dims, table, there) if value_difference < 0 && int32(-value_difference) > there_value { /* Can't afford this transition */ return } possible_value := there_value + int32(value_difference) if possible_value > *best_value { *best_value = possible_value copy(best_source, there) } } var cell_filled_count int func CellValue(data planet_data, dims []int, table []State, addr []int) int32 { my_index := EncodeIndex(dims, addr) if table[my_index].value == VALUE_BEING_EVALUATED { panic("Circular dependency") } if table[my_index].value != VALUE_UNINITIALIZED { return table[my_index].value } table[my_index].value = VALUE_BEING_EVALUATED best_value := int32(VALUE_RUBISH) best_source := make([]int, NumDimensions) other := make([]int, NumDimensions) copy(other, addr) planet := data.i2p[addr[Location]] /* Travel here */ if addr[Traded] == 0 { /* Can't have traded immediately after traveling. */ other[Traded] = 1 /* Travel from states that have done trading. */ /* Travel here via a 2-fuel unit jump */ if addr[Fuel]+2 < dims[Fuel] { other[Fuel] = addr[Fuel] + 2 hole_index := (dims[Fuel] - 1) - (addr[Fuel] + 2) if hole_index >= len(flight_plan()) || addr[Location] != data.p2i[flight_plan()[hole_index]] { for other[Location] = 0; other[Location] < dims[Location]; other[Location]++ { if data.Planets[data.i2p[addr[Location]]].BeaconOn { Consider(data, dims, table, other, 0, &best_value, best_source) } } } other[Location] = addr[Location] other[Fuel] = addr[Fuel] } /* Travel here via a 1-fuel unit jump (a hyper hole) */ if addr[Fuel]+1 < dims[Fuel] { hole_index := (dims[Fuel] - 1) - (addr[Fuel] + 1) if hole_index < len(flight_plan()) && addr[Location] == data.p2i[flight_plan()[hole_index]] { other[Fuel] = addr[Fuel] + 1 for other[Location] = 0; other[Location] < dims[Location]; other[Location]++ { Consider(data, dims, table, other, 0, &best_value, best_source) } other[Location] = addr[Location] other[Fuel] = addr[Fuel] } } /* Travel here via Eden Warp Unit */ if addr[Edens]+1 < dims[Edens] && addr[UnusedCargo] > 0 { _, available := data.Planets[data.i2p[addr[Location]]].RelativePrices["Eden Warp Units"] if !available { other[Edens] = addr[Edens] + 1 if other[Hold] != 0 { other[UnusedCargo] = addr[UnusedCargo] - 1 } for other[Location] = 0; other[Location] < dims[Location]; other[Location]++ { Consider(data, dims, table, other, 0, &best_value, best_source) } other[Location] = addr[Location] other[UnusedCargo] = addr[UnusedCargo] other[Edens] = addr[Edens] } } other[Traded] = addr[Traded] } /* Trade */ if addr[Traded] == 1 { other[Traded] = 0 /* Consider not trading */ Consider(data, dims, table, other, 0, &best_value, best_source) if !data.Planets[data.i2p[addr[Location]]].Private { /* Sell */ if addr[Hold] == 0 && addr[UnusedCargo] == 0 { for other[Hold] = 0; other[Hold] < dims[Hold]; other[Hold]++ { commodity := data.i2c[other[Hold]] if !data.Commodities[commodity].CanSell { continue } relative_price, available := data.Planets[planet].RelativePrices[commodity] if !available { // TODO: Dump cargo continue } base_price := data.Commodities[commodity].BasePrice absolute_price := float64(base_price) * float64(relative_price) / 100.0 sell_price := int(absolute_price * 0.9) for other[UnusedCargo] = 0; other[UnusedCargo] < dims[UnusedCargo]; other[UnusedCargo]++ { quantity := *hold - (other[UnusedCargo] + other[Cloaks] + other[Edens]) sale_value := quantity * sell_price Consider(data, dims, table, other, sale_value, &best_value, best_source) } } other[UnusedCargo] = addr[UnusedCargo] other[Hold] = addr[Hold] } /* Buy */ other[Traded] = addr[Traded] /* Buy after selling */ if addr[Hold] != 0 { commodity := data.i2c[addr[Hold]] if data.Commodities[commodity].CanSell { relative_price, available := data.Planets[planet].RelativePrices[commodity] if available { base_price := data.Commodities[commodity].BasePrice absolute_price := int(float64(base_price) * float64(relative_price) / 100.0) quantity := *hold - (addr[UnusedCargo] + addr[Cloaks] + addr[Edens]) total_price := quantity * absolute_price other[Hold] = 0 other[UnusedCargo] = 0 Consider(data, dims, table, other, -total_price, &best_value, best_source) other[UnusedCargo] = addr[UnusedCargo] other[Hold] = addr[Hold] } } } } other[Traded] = addr[Traded] } /* Buy a Device of Cloaking */ if addr[Cloaks] == 1 && addr[UnusedCargo] < dims[UnusedCargo]-1 { relative_price, available := data.Planets[data.i2p[addr[Location]]].RelativePrices["Device Of Cloakings"] if available { absolute_price := int(float64(data.Commodities["Device Of Cloakings"].BasePrice) * float64(relative_price) / 100.0) other[Cloaks] = 0 if other[Hold] != 0 { other[UnusedCargo] = addr[UnusedCargo] + 1 } Consider(data, dims, table, other, -absolute_price, &best_value, best_source) other[UnusedCargo] = addr[UnusedCargo] other[Cloaks] = addr[Cloaks] } } /* Buy Fighter Drones */ if addr[BuyFighters] == 1 { relative_price, available := data.Planets[data.i2p[addr[Location]]].RelativePrices["Fighter Drones"] if available { absolute_price := int(float64(data.Commodities["Fighter Drones"].BasePrice) * float64(relative_price) / 100.0) other[BuyFighters] = 0 Consider(data, dims, table, other, -absolute_price**drones, &best_value, best_source) other[BuyFighters] = addr[BuyFighters] } } /* Buy Shield Batteries */ if addr[BuyShields] == 1 { relative_price, available := data.Planets[data.i2p[addr[Location]]].RelativePrices["Shield Batterys"] if available { absolute_price := int(float64(data.Commodities["Shield Batterys"].BasePrice) * float64(relative_price) / 100.0) other[BuyShields] = 0 Consider(data, dims, table, other, -absolute_price**batteries, &best_value, best_source) other[BuyShields] = addr[BuyShields] } } /* Visit this planet */ for i := uint(0); i < uint(len(visit())); i++ { if addr[Visit]&(1< 0 && addr[Edens] <= eden_limit { relative_price, available := data.Planets[data.i2p[addr[Location]]].RelativePrices["Eden Warp Units"] if available { absolute_price := int(float64(data.Commodities["Eden Warp Units"].BasePrice) * float64(relative_price) / 100.0) for quantity := addr[Edens]; quantity > 0; quantity-- { other[Edens] = addr[Edens] - quantity if addr[Hold] != 0 { other[UnusedCargo] = addr[UnusedCargo] + quantity } if other[UnusedCargo] < dims[UnusedCargo] { Consider(data, dims, table, other, -absolute_price*quantity, &best_value, best_source) } } other[Edens] = addr[Edens] other[UnusedCargo] = addr[UnusedCargo] } } // Check that we didn't lose track of any temporary modifications to other. for i := 0; i < NumDimensions; i++ { if addr[i] != other[i] { panic(i) } } // Sanity check: This cell was in state BEING_EVALUATED // the whole time that it was being evaluated. if table[my_index].value != VALUE_BEING_EVALUATED { panic(my_index) } // Record our findings table[my_index].value = best_value table[my_index].from = EncodeIndex(dims, best_source) // UI: Progress bar cell_filled_count++ if cell_filled_count&0xfff == 0 { print(fmt.Sprintf("\r%3.1f%%", 100*float64(cell_filled_count)/float64(StateTableSize(dims)))) } return table[my_index].value } func FinalState(dims []int) []int { addr := make([]int, NumDimensions) addr[Edens] = *end_edens addr[Cloaks] = dims[Cloaks] - 1 addr[BuyFighters] = dims[BuyFighters] - 1 addr[BuyShields] = dims[BuyShields] - 1 addr[Visit] = dims[Visit] - 1 addr[Traded] = 1 addr[Hold] = 0 addr[UnusedCargo] = 0 // Fuel and Location are determined by FindBestState return addr } func FindBestState(data planet_data, dims []int, table []State, addr []int) int32 { max_index := int32(-1) max_value := 0.0 max_fuel := 1 if *fuel == 0 { max_fuel = 0 } for addr[Fuel] = 0; addr[Fuel] <= max_fuel; addr[Fuel]++ { for addr[Location] = 0; addr[Location] < dims[Location]; addr[Location]++ { planet := data.i2p[addr[Location]] if len(end()) == 0 || end()[planet] { index := EncodeIndex(dims, addr) today_value := CellValue(data, dims, table, addr) tomorrow_value := *tomorrow_weight * float64(*hold+data.Planets[planet].TomorrowValue) value := float64(today_value) + tomorrow_value if value > max_value { max_value = value max_index = index } } } } return max_index } func Commas(n int32) (s string) { if n < 0 { panic(n) } r := n % 1000 n /= 1000 for n > 0 { s = fmt.Sprintf(",%03d", r) + s r = n % 1000 n /= 1000 } s = fmt.Sprint(r) + s return } func DescribePath(data planet_data, dims []int, table []State, start int32) (description []string) { for index := start; table[index].from > FROM_ROOT; index = table[index].from { if table[index].from == FROM_UNINITIALIZED { panic(index) } var line string addr := DecodeIndex(dims, index) prev := DecodeIndex(dims, table[index].from) if addr[Fuel] != prev[Fuel] { from := data.i2p[prev[Location]] to := data.i2p[addr[Location]] line += fmt.Sprintf("Jump from %v to %v (%v hyper jump units)", from, to, prev[Fuel]-addr[Fuel]) } if addr[Edens] == prev[Edens]-1 { from := data.i2p[prev[Location]] to := data.i2p[addr[Location]] line += fmt.Sprintf("Eden warp from %v to %v", from, to) } if addr[Hold] != prev[Hold] { if addr[Hold] == 0 { quantity := *hold - (prev[UnusedCargo] + prev[Edens] + prev[Cloaks]) line += fmt.Sprintf("Sell %v %v", quantity, data.i2c[prev[Hold]]) } else if prev[Hold] == 0 { quantity := *hold - (addr[UnusedCargo] + addr[Edens] + addr[Cloaks]) line += fmt.Sprintf("Buy %v %v", quantity, data.i2c[addr[Hold]]) } else { panic("Switched cargo?") } } if addr[Cloaks] == 1 && prev[Cloaks] == 0 { // TODO: Dump cloaks, convert from cargo? line += "Buy a Cloak" } if addr[Edens] > prev[Edens] { line += fmt.Sprint("Buy ", addr[Edens]-prev[Edens], " Eden Warp Units") } if addr[BuyShields] == 1 && prev[BuyShields] == 0 { line += fmt.Sprint("Buy ", *batteries, " Shield Batterys") } if addr[BuyFighters] == 1 && prev[BuyFighters] == 0 { line += fmt.Sprint("Buy ", *drones, " Fighter Drones") } if addr[Visit] != prev[Visit] { // TODO: verify that the bit chat changed is addr[Location] line += fmt.Sprint("Visit ", data.i2p[addr[Location]]) } if line == "" && addr[Hold] == prev[Hold] && addr[Traded] != prev[Traded] { // The Traded dimension is for housekeeping. It doesn't directly // correspond to in-game actions, so don't report transitions. continue } if line == "" { line = fmt.Sprint(prev, " -> ", addr) } description = append(description, fmt.Sprintf("%13v ", Commas(table[index].value))+line) } return } // (Example of a use case for generics in Go) func IndexPlanets(m *map[string]Planet, start_at int) (map[string]int, []string) { e2i := make(map[string]int, len(*m)+start_at) i2e := make([]string, len(*m)+start_at) i := start_at for e := range *m { e2i[e] = i i2e[i] = e i++ } return e2i, i2e } func IndexCommodities(m *map[string]Commodity, start_at int) (map[string]int, []string) { e2i := make(map[string]int, len(*m)+start_at) i2e := make([]string, len(*m)+start_at) i := start_at for e := range *m { e2i[e] = i i2e[i] = e i++ } return e2i, i2e } func main() { flag.Parse() if *start == "" || *funds == 0 { print("--start and --funds are required. --help for more\n") return } if *cpuprofile != "" { f, err := os.Create(*cpuprofile) if err != nil { panic(err) } pprof.StartCPUProfile(f) defer pprof.StopCPUProfile() } data := ReadData() if *drone_price > 0 { temp := data.Commodities["Fighter Drones"] temp.BasePrice = *drone_price data.Commodities["Fighter Drones"] = temp } if *battery_price > 0 { temp := data.Commodities["Shield Batterys"] temp.BasePrice = *battery_price data.Commodities["Shield Batterys"] = temp } data.p2i, data.i2p = IndexPlanets(&data.Planets, 0) data.c2i, data.i2c = IndexCommodities(&data.Commodities, 1) dims := DimensionSizes(data) table := CreateStateTable(data, dims) final_state := FinalState(dims) best := FindBestState(data, dims, table, final_state) print("\n") if best == -1 { print("Cannot acheive success criteria\n") return } description := DescribePath(data, dims, table, best) for i := len(description) - 1; i >= 0; i-- { fmt.Println(description[i]) } // Ok, that was the important stuff. Now some fun stuff. // Calculate total cost of fighters and shields if *drones > 0 || *batteries > 0 { fmt.Println() } if *drones > 0 { final_state[BuyFighters] = 0 alt_best := FindBestState(data, dims, table, final_state) cost := table[alt_best].value - table[best].value fmt.Println("\rDrones were", float64(cost)/float64(*drones), "each") final_state[BuyFighters] = 1 } if *batteries > 0 { final_state[BuyShields] = 0 alt_best := FindBestState(data, dims, table, final_state) cost := table[alt_best].value - table[best].value fmt.Println("\rBatteries were", float64(cost)/float64(*batteries), "each") final_state[BuyShields] = 1 } // Use extra eden warps / cost of --end_edends if *end_edens > 0 { fmt.Println() } for extra_edens := 1; extra_edens <= *end_edens; extra_edens++ { final_state[Edens] = *end_edens - extra_edens alt_best := FindBestState(data, dims, table, final_state) extra_funds := table[alt_best].value - table[best].value fmt.Println("\rUse", extra_edens, "extra edens, make an extra", Commas(extra_funds), "(", Commas(extra_funds/int32(extra_edens)), "per eden)") } final_state[Edens] = *end_edens // Cost of visiting places if dims[Visit] > 1 { fmt.Println() } for i := uint(0); i < uint(len(visit())); i++ { all_bits := dims[Visit] - 1 final_state[Visit] = all_bits & ^(1 << i) alt_best := FindBestState(data, dims, table, final_state) cost := table[alt_best].value - table[best].value fmt.Printf("\r%11v Cost to visit %v\n", Commas(cost), visit()[i]) } final_state[Visit] = dims[Visit] - 1 // Cost of --end if len(end()) > 0 { save_end_string := *end_string *end_string = "" end_cache = nil alt_best := FindBestState(data, dims, table, final_state) cost := table[alt_best].value - table[best].value fmt.Printf("\r\n%11v Cost of --end %v\n", Commas(cost), save_end_string) *end_string = save_end_string } }