1 /* Planeteer: Give trade route advice for Planets: The Exploration of Space
2 * Copyright (C) 2011 Scott Worley <sworley@chkno.net>
4 * This program is free software: you can redistribute it and/or modify
5 * it under the terms of the GNU Affero General Public License as
6 * published by the Free Software Foundation, either version 3 of the
7 * License, or (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU Affero General Public License for more details.
14 * You should have received a copy of the GNU Affero General Public License
15 * along with this program. If not, see <http://www.gnu.org/licenses/>.
22 import "encoding/json"
24 import "runtime/pprof"
27 var funds = flag.Int("funds", 0,
30 var start = flag.String("start", "",
31 "The planet to start at")
33 var flight_plan_string = flag.String("flight_plan", "",
34 "Your hyper-holes for the day, comma-separated.")
36 var end_string = flag.String("end", "",
37 "A comma-separated list of acceptable ending planets.")
39 var planet_data_file = flag.String("planet_data_file", "planet-data",
40 "The file to read planet data from")
42 var fuel = flag.Int("fuel", 16, "Hyper Jump power left")
44 var hold = flag.Int("hold", 300, "Size of your cargo hold")
46 var start_hold = flag.String("start_hold", "", "Start with a hold full of cargo")
48 var start_edens = flag.Int("start_edens", 0,
49 "How many Eden Warp Units are you starting with?")
51 var end_edens = flag.Int("end_edens", 0,
52 "How many Eden Warp Units would you like to keep (not use)?")
54 var cloak = flag.Bool("cloak", false,
55 "Make sure to end with a Device of Cloaking")
57 var drones = flag.Int("drones", 0, "Buy this many Fighter Drones")
59 var batteries = flag.Int("batteries", 0, "Buy this many Shield Batterys")
61 var drone_price = flag.Int("drone_price", 0, "Today's Fighter Drone price")
63 var battery_price = flag.Int("battery_price", 0, "Today's Shield Battery price")
65 var visit_string = flag.String("visit", "",
66 "A comma-separated list of planets to make sure to visit")
68 var tomorrow_weight = flag.Float64("tomorrow_weight", 1.0,
69 "Weight for the expected value of tomorrow's trading. 0.0 - 1.0")
71 var extra_stats = flag.Bool("extra_stats", true,
72 "Show additional information of possible interest")
74 var cpuprofile = flag.String("cpuprofile", "", "write cpu profile to file")
76 var visit_cache []string
78 func visit() []string {
79 if visit_cache == nil {
80 if *visit_string == "" {
83 visit_cache = strings.Split(*visit_string, ",")
88 var flight_plan_cache []string
90 func flight_plan() []string {
91 if flight_plan_cache == nil {
92 if *flight_plan_string == "" {
95 flight_plan_cache = strings.Split(*flight_plan_string, ",")
97 return flight_plan_cache
100 var end_cache map[string]bool
102 func end() map[string]bool {
103 if end_cache == nil {
104 if *end_string == "" {
107 m := make(map[string]bool)
108 for _, p := range strings.Split(*end_string, ",") {
116 type Commodity struct {
125 /* Use relative prices rather than absolute prices because you
126 can get relative prices without traveling to each planet. */
127 RelativePrices map[string]int
129 type planet_data struct {
130 Commodities map[string]Commodity
131 Planets map[string]Planet
132 p2i, c2i map[string]int // Generated; not read from file
133 i2p, i2c []string // Generated; not read from file
136 func ReadData() (data planet_data) {
137 f, err := os.Open(*planet_data_file)
142 err = json.NewDecoder(f).Decode(&data)
149 /* This program operates by filling in a state table representing the best
150 * possible trips you could make; the ones that makes you the most money.
151 * This is feasible because we don't look at all the possible trips.
152 * We define a list of things that are germane to this game and then only
153 * consider the best outcome in each possible game state.
155 * Each cell in the table represents a state in the game. In each cell,
156 * we track two things: 1. the most money you could possibly have while in
157 * that state and 2. one possible way to get into that state with that
160 * A basic analysis can be done with a two-dimensional table: location and
161 * fuel. planeteer-1.0 used this two-dimensional table. This version
162 * adds features mostly by adding dimensions to this table.
164 * Note that the sizes of each dimension are data driven. Many dimensions
165 * collapse to one possible value (ie, disappear) if the corresponding
166 * feature is not enabled.
168 * The order of the dimensions in the list of constants below determines
169 * their layout in RAM. The cargo-based 'dimensions' are not completely
170 * independent -- some combinations are illegal and not used. They are
171 * handled as three dimensions rather than one for simplicity. Placing
172 * these dimensions first causes the unused cells in the table to be
173 * grouped together in large blocks. This keeps the unused cells from
174 * polluting cache lines, and if the spans of unused cells are large
175 * enough, allows the memory manager to swap out entire pages.
177 * If the table gets too big to fit in RAM:
178 * * Combine the Edens, Cloaks, and UnusedCargo dimensions. Of the
179 * 24 combinations, only 15 are legal: a 38% savings.
180 * * Reduce the size of the Fuel dimension to 3. Explicit iteration
181 * only ever needs to look backwards 2 units, so the logical values
182 * can rotate through the same 3 physical addresses. This would be
183 * good for an 82% savings. Note that explicit iteration went away
185 * * Reduce the size of the Edens dimension from 3 to 2, for the
186 * same reasons as Fuel above. 33% savings.
187 * * Buy more ram. (Just sayin'. It's cheaper than you think.)
191 // The official list of dimensions:
193 // Name Num Size Description
194 Edens = iota // 1 3 # of Eden warp units (0 - 2 typically)
195 Cloaks // 2 1-2 # of Devices of Cloaking (0 or 1)
196 UnusedCargo // 3 4 # of unused cargo spaces (0 - 3 typically)
197 Fuel // 4 17 Hyper jump power left (0 - 16)
198 Location // 5 26 Location (which planet)
199 Hold // 6 15 Cargo bay contents (a *Commodity or nil)
200 Traded // 7 2 Traded yet?
201 BuyFighters // 8 1-2 Errand: Buy fighter drones
202 BuyShields // 9 1-2 Errand: Buy shield batteries
203 Visit // 10 1-2**N Visit: Stop by these N planets in the route
208 func bint(b bool) int {
215 func DimensionSizes(data planet_data) LogicalIndex {
216 eden_capacity := data.Commodities["Eden Warp Units"].Limit
217 if *start_edens > eden_capacity {
218 eden_capacity = *start_edens
220 cloak_capacity := bint(*cloak)
221 dims := make(LogicalIndex, NumDimensions)
222 dims[Edens] = eden_capacity + 1
223 dims[Cloaks] = cloak_capacity + 1
224 dims[UnusedCargo] = eden_capacity + cloak_capacity + 1
225 dims[Fuel] = *fuel + 1
226 dims[Location] = len(data.Planets)
227 dims[Hold] = len(data.Commodities) + 1
229 dims[BuyFighters] = bint(*drones > 0) + 1
230 dims[BuyShields] = bint(*batteries > 0) + 1
231 dims[Visit] = 1 << uint(len(visit()))
233 // Remind myself to add a line above when adding new dimensions
234 for i, dim := range dims {
243 type PhysicalIndex int32
244 type LogicalIndex []int
246 func StateTableSize(dims LogicalIndex) int {
248 for _, size := range dims {
260 FROM_ROOT = -2147483647 + iota
263 VALUE_BEING_EVALUATED
267 func EncodeIndex(dims, addr LogicalIndex) PhysicalIndex {
269 if addr[0] > dims[0] {
272 for i := 1; i < NumDimensions; i++ {
273 if addr[i] < 0 || addr[i] >= dims[i] {
276 index = index*dims[i] + addr[i]
278 return PhysicalIndex(index)
281 func DecodeIndex(dims LogicalIndex, index PhysicalIndex) LogicalIndex {
282 scratch := int(index)
283 addr := make(LogicalIndex, NumDimensions)
284 for i := NumDimensions - 1; i > 0; i-- {
285 addr[i] = scratch % dims[i]
292 func CreateStateTable(data planet_data, dims LogicalIndex) []State {
293 table := make([]State, StateTableSize(dims))
294 for i := range table {
295 table[i].value = VALUE_UNINITIALIZED
296 table[i].from = FROM_UNINITIALIZED
299 addr := make(LogicalIndex, NumDimensions)
301 addr[Edens] = *start_edens
302 addr[Location] = data.p2i[*start]
303 if *start_hold != "" {
304 addr[Hold] = data.c2i[*start_hold]
306 start_index := EncodeIndex(dims, addr)
307 table[start_index].value = Value(*funds)
308 table[start_index].from = FROM_ROOT
313 /* CellValue fills in the one cell at address addr by looking at all
314 * the possible ways to reach this cell and selecting the best one. */
316 func Consider(data planet_data, dims LogicalIndex, table []State, there LogicalIndex, value_difference int, best_value *Value, best_source LogicalIndex) {
317 there_value := CellValue(data, dims, table, there)
318 if value_difference < 0 && Value(-value_difference) > there_value {
319 /* Can't afford this transition */
322 possible_value := there_value + Value(value_difference)
323 if possible_value > *best_value {
324 *best_value = possible_value
325 copy(best_source, there)
329 var cell_filled_count int
331 func CellValue(data planet_data, dims LogicalIndex, table []State, addr LogicalIndex) Value {
332 my_index := EncodeIndex(dims, addr)
333 if table[my_index].value == VALUE_BEING_EVALUATED {
334 panic("Circular dependency")
336 if table[my_index].value != VALUE_UNINITIALIZED {
337 return table[my_index].value
339 table[my_index].value = VALUE_BEING_EVALUATED
341 best_value := Value(VALUE_RUBISH)
342 best_source := make(LogicalIndex, NumDimensions)
343 other := make(LogicalIndex, NumDimensions)
345 planet := data.i2p[addr[Location]]
348 if addr[Traded] == 0 { /* Can't have traded immediately after traveling. */
349 other[Traded] = 1 /* Travel from states that have done trading. */
351 /* Travel here via a 2-fuel unit jump */
352 if addr[Fuel]+2 < dims[Fuel] {
353 other[Fuel] = addr[Fuel] + 2
354 hole_index := (dims[Fuel] - 1) - (addr[Fuel] + 2)
355 if hole_index >= len(flight_plan()) || addr[Location] != data.p2i[flight_plan()[hole_index]] {
356 for other[Location] = 0; other[Location] < dims[Location]; other[Location]++ {
357 if data.Planets[data.i2p[addr[Location]]].BeaconOn {
358 Consider(data, dims, table, other, 0, &best_value, best_source)
362 other[Location] = addr[Location]
363 other[Fuel] = addr[Fuel]
366 /* Travel here via a 1-fuel unit jump (a hyper hole) */
367 if addr[Fuel]+1 < dims[Fuel] {
368 hole_index := (dims[Fuel] - 1) - (addr[Fuel] + 1)
369 if hole_index < len(flight_plan()) && addr[Location] == data.p2i[flight_plan()[hole_index]] {
370 other[Fuel] = addr[Fuel] + 1
371 for other[Location] = 0; other[Location] < dims[Location]; other[Location]++ {
372 Consider(data, dims, table, other, 0, &best_value, best_source)
374 other[Location] = addr[Location]
375 other[Fuel] = addr[Fuel]
379 /* Travel here via Eden Warp Unit */
380 if addr[Edens]+1 < dims[Edens] && addr[UnusedCargo] > 0 {
381 _, available := data.Planets[data.i2p[addr[Location]]].RelativePrices["Eden Warp Units"]
383 other[Edens] = addr[Edens] + 1
384 if other[Hold] != 0 {
385 other[UnusedCargo] = addr[UnusedCargo] - 1
387 for other[Location] = 0; other[Location] < dims[Location]; other[Location]++ {
388 Consider(data, dims, table, other, 0, &best_value, best_source)
390 other[Location] = addr[Location]
391 other[UnusedCargo] = addr[UnusedCargo]
392 other[Edens] = addr[Edens]
395 other[Traded] = addr[Traded]
399 if addr[Traded] == 1 {
402 /* Consider not trading */
403 Consider(data, dims, table, other, 0, &best_value, best_source)
405 if !data.Planets[data.i2p[addr[Location]]].Private {
408 if addr[Hold] == 0 && addr[UnusedCargo] == 0 {
409 for other[Hold] = 0; other[Hold] < dims[Hold]; other[Hold]++ {
410 commodity := data.i2c[other[Hold]]
411 if !data.Commodities[commodity].CanSell {
414 relative_price, available := data.Planets[planet].RelativePrices[commodity]
419 base_price := data.Commodities[commodity].BasePrice
420 absolute_price := float64(base_price) * float64(relative_price) / 100.0
421 sell_price := int(absolute_price * 0.9)
423 for other[UnusedCargo] = 0; other[UnusedCargo] < dims[UnusedCargo]; other[UnusedCargo]++ {
424 quantity := *hold - (other[UnusedCargo] + other[Cloaks] + other[Edens])
425 sale_value := quantity * sell_price
426 Consider(data, dims, table, other, sale_value, &best_value, best_source)
429 other[UnusedCargo] = addr[UnusedCargo]
430 other[Hold] = addr[Hold]
434 other[Traded] = addr[Traded] /* Buy after selling */
436 commodity := data.i2c[addr[Hold]]
437 if data.Commodities[commodity].CanSell {
438 relative_price, available := data.Planets[planet].RelativePrices[commodity]
440 base_price := data.Commodities[commodity].BasePrice
441 absolute_price := int(float64(base_price) * float64(relative_price) / 100.0)
442 quantity := *hold - (addr[UnusedCargo] + addr[Cloaks] + addr[Edens])
443 total_price := quantity * absolute_price
445 other[UnusedCargo] = 0
446 Consider(data, dims, table, other, -total_price, &best_value, best_source)
447 other[UnusedCargo] = addr[UnusedCargo]
448 other[Hold] = addr[Hold]
453 other[Traded] = addr[Traded]
456 /* Buy a Device of Cloaking */
457 if addr[Cloaks] == 1 && addr[UnusedCargo] < dims[UnusedCargo]-1 {
458 relative_price, available := data.Planets[data.i2p[addr[Location]]].RelativePrices["Device Of Cloakings"]
460 absolute_price := int(float64(data.Commodities["Device Of Cloakings"].BasePrice) * float64(relative_price) / 100.0)
462 if other[Hold] != 0 {
463 other[UnusedCargo] = addr[UnusedCargo] + 1
465 Consider(data, dims, table, other, -absolute_price, &best_value, best_source)
466 other[UnusedCargo] = addr[UnusedCargo]
467 other[Cloaks] = addr[Cloaks]
471 /* Buy Fighter Drones */
472 if addr[BuyFighters] == 1 {
473 relative_price, available := data.Planets[data.i2p[addr[Location]]].RelativePrices["Fighter Drones"]
475 absolute_price := int(float64(data.Commodities["Fighter Drones"].BasePrice) * float64(relative_price) / 100.0)
476 other[BuyFighters] = 0
477 Consider(data, dims, table, other, -absolute_price**drones, &best_value, best_source)
478 other[BuyFighters] = addr[BuyFighters]
482 /* Buy Shield Batteries */
483 if addr[BuyShields] == 1 {
484 relative_price, available := data.Planets[data.i2p[addr[Location]]].RelativePrices["Shield Batterys"]
486 absolute_price := int(float64(data.Commodities["Shield Batterys"].BasePrice) * float64(relative_price) / 100.0)
487 other[BuyShields] = 0
488 Consider(data, dims, table, other, -absolute_price**batteries, &best_value, best_source)
489 other[BuyShields] = addr[BuyShields]
493 /* Visit this planet */
494 for i := uint(0); i < uint(len(visit())); i++ {
495 if addr[Visit]&(1<<i) != 0 && visit()[i] == data.i2p[addr[Location]] {
496 other[Visit] = addr[Visit] & ^(1 << i)
497 Consider(data, dims, table, other, 0, &best_value, best_source)
500 other[Visit] = addr[Visit]
502 /* Buy Eden warp units */
503 eden_limit := data.Commodities["Eden Warp Units"].Limit
504 if addr[Edens] > 0 && addr[Edens] <= eden_limit {
505 relative_price, available := data.Planets[data.i2p[addr[Location]]].RelativePrices["Eden Warp Units"]
507 absolute_price := int(float64(data.Commodities["Eden Warp Units"].BasePrice) * float64(relative_price) / 100.0)
508 for quantity := addr[Edens]; quantity > 0; quantity-- {
509 other[Edens] = addr[Edens] - quantity
511 other[UnusedCargo] = addr[UnusedCargo] + quantity
513 if other[UnusedCargo] < dims[UnusedCargo] {
514 Consider(data, dims, table, other, -absolute_price*quantity, &best_value, best_source)
517 other[Edens] = addr[Edens]
518 other[UnusedCargo] = addr[UnusedCargo]
522 // Check that we didn't lose track of any temporary modifications to other.
523 for i := 0; i < NumDimensions; i++ {
524 if addr[i] != other[i] {
529 // Sanity check: This cell was in state BEING_EVALUATED
530 // the whole time that it was being evaluated.
531 if table[my_index].value != VALUE_BEING_EVALUATED {
535 // Record our findings
536 table[my_index].value = best_value
537 table[my_index].from = EncodeIndex(dims, best_source)
541 if cell_filled_count&0xfff == 0 {
542 print(fmt.Sprintf("\r%3.1f%%", 100*float64(cell_filled_count)/float64(StateTableSize(dims))))
545 return table[my_index].value
548 func FinalState(dims LogicalIndex) LogicalIndex {
549 addr := make(LogicalIndex, NumDimensions)
550 addr[Edens] = *end_edens
551 addr[Cloaks] = dims[Cloaks] - 1
552 addr[BuyFighters] = dims[BuyFighters] - 1
553 addr[BuyShields] = dims[BuyShields] - 1
554 addr[Visit] = dims[Visit] - 1
557 addr[UnusedCargo] = 0
558 // Fuel and Location are determined by FindBestState
562 func FindBestState(data planet_data, dims LogicalIndex, table []State, addr LogicalIndex) PhysicalIndex {
563 max_index := PhysicalIndex(-1)
569 for addr[Fuel] = 0; addr[Fuel] <= max_fuel; addr[Fuel]++ {
570 for addr[Location] = 0; addr[Location] < dims[Location]; addr[Location]++ {
571 planet := data.i2p[addr[Location]]
572 if len(end()) == 0 || end()[planet] {
573 index := EncodeIndex(dims, addr)
574 today_value := CellValue(data, dims, table, addr)
575 tomorrow_value := *tomorrow_weight * float64(*hold+data.Planets[planet].TomorrowValue)
576 value := float64(today_value) + tomorrow_value
577 if value > max_value {
587 func Commas(n Value) (s string) {
594 s = fmt.Sprintf(",%03d", r) + s
598 s = fmt.Sprint(r) + s
602 func FighterAndShieldCost(data planet_data, dims LogicalIndex, table []State, best PhysicalIndex) {
603 if *drones == 0 && *batteries == 0 {
608 final_state := FinalState(dims)
609 final_state[BuyFighters] = 0
610 alt_best := FindBestState(data, dims, table, final_state)
611 cost := table[alt_best].value - table[best].value
612 fmt.Println("\rDrones were", float64(cost)/float64(*drones), "each")
615 final_state := FinalState(dims)
616 final_state[BuyShields] = 0
617 alt_best := FindBestState(data, dims, table, final_state)
618 cost := table[alt_best].value - table[best].value
619 fmt.Println("\rBatteries were", float64(cost)/float64(*batteries), "each")
623 func EndEdensCost(data planet_data, dims LogicalIndex, table []State, best PhysicalIndex) {
628 final_state := FinalState(dims)
629 for extra_edens := 1; extra_edens <= *end_edens; extra_edens++ {
630 final_state[Edens] = *end_edens - extra_edens
631 alt_best := FindBestState(data, dims, table, final_state)
632 extra_funds := table[alt_best].value - table[best].value
633 fmt.Println("\rUse", extra_edens, "extra edens, make an extra",
634 Commas(extra_funds), "(",
635 Commas(extra_funds/Value(extra_edens)), "per eden)")
639 func VisitCost(data planet_data, dims LogicalIndex, table []State, best PhysicalIndex) {
640 if dims[Visit] == 1 {
644 final_state := FinalState(dims)
645 for i := uint(0); i < uint(len(visit())); i++ {
646 all_bits := dims[Visit] - 1
647 final_state[Visit] = all_bits & ^(1 << i)
648 alt_best := FindBestState(data, dims, table, final_state)
649 cost := table[alt_best].value - table[best].value
650 fmt.Printf("\r%11v Cost to visit %v\n", Commas(cost), visit()[i])
654 func EndLocationCost(data planet_data, dims LogicalIndex, table []State, best PhysicalIndex) {
659 final_state := FinalState(dims)
660 save_end_string := *end_string
663 alt_best := FindBestState(data, dims, table, final_state)
664 cost := table[alt_best].value - table[best].value
665 fmt.Printf("\r%11v Cost of --end %v\n", Commas(cost), save_end_string)
666 *end_string = save_end_string
669 func DescribePath(data planet_data, dims LogicalIndex, table []State, start PhysicalIndex) (description []string) {
670 for index := start; table[index].from > FROM_ROOT; index = table[index].from {
671 if table[index].from == FROM_UNINITIALIZED {
675 addr := DecodeIndex(dims, index)
676 prev := DecodeIndex(dims, table[index].from)
677 if addr[Fuel] != prev[Fuel] {
678 from := data.i2p[prev[Location]]
679 to := data.i2p[addr[Location]]
680 line += fmt.Sprintf("Jump from %v to %v (%v hyper jump units)", from, to, prev[Fuel]-addr[Fuel])
682 if addr[Edens] == prev[Edens]-1 {
683 from := data.i2p[prev[Location]]
684 to := data.i2p[addr[Location]]
685 line += fmt.Sprintf("Eden warp from %v to %v", from, to)
687 if addr[Hold] != prev[Hold] {
689 quantity := *hold - (prev[UnusedCargo] + prev[Edens] + prev[Cloaks])
690 line += fmt.Sprintf("Sell %v %v", quantity, data.i2c[prev[Hold]])
691 } else if prev[Hold] == 0 {
692 quantity := *hold - (addr[UnusedCargo] + addr[Edens] + addr[Cloaks])
693 line += fmt.Sprintf("Buy %v %v", quantity, data.i2c[addr[Hold]])
695 panic("Switched cargo?")
699 if addr[Cloaks] == 1 && prev[Cloaks] == 0 {
700 // TODO: Dump cloaks, convert from cargo?
701 line += "Buy a Cloak"
703 if addr[Edens] > prev[Edens] {
704 line += fmt.Sprint("Buy ", addr[Edens]-prev[Edens], " Eden Warp Units")
706 if addr[BuyShields] == 1 && prev[BuyShields] == 0 {
707 line += fmt.Sprint("Buy ", *batteries, " Shield Batterys")
709 if addr[BuyFighters] == 1 && prev[BuyFighters] == 0 {
710 line += fmt.Sprint("Buy ", *drones, " Fighter Drones")
712 if addr[Visit] != prev[Visit] {
713 // TODO: verify that the bit chat changed is addr[Location]
714 line += fmt.Sprint("Visit ", data.i2p[addr[Location]])
716 if line == "" && addr[Hold] == prev[Hold] && addr[Traded] != prev[Traded] {
717 // The Traded dimension is for housekeeping. It doesn't directly
718 // correspond to in-game actions, so don't report transitions.
722 line = fmt.Sprint(prev, " -> ", addr)
724 description = append(description, fmt.Sprintf("%13v ", Commas(table[index].value))+line)
729 // (Example of a use case for generics in Go)
730 func IndexPlanets(m *map[string]Planet, start_at int) (map[string]int, []string) {
731 e2i := make(map[string]int, len(*m)+start_at)
732 i2e := make([]string, len(*m)+start_at)
741 func IndexCommodities(m *map[string]Commodity, start_at int) (map[string]int, []string) {
742 e2i := make(map[string]int, len(*m)+start_at)
743 i2e := make([]string, len(*m)+start_at)
755 if *start == "" || *funds == 0 {
756 print("--start and --funds are required. --help for more\n")
759 if *cpuprofile != "" {
760 f, err := os.Create(*cpuprofile)
764 pprof.StartCPUProfile(f)
765 defer pprof.StopCPUProfile()
768 if *drone_price > 0 {
769 temp := data.Commodities["Fighter Drones"]
770 temp.BasePrice = *drone_price
771 data.Commodities["Fighter Drones"] = temp
773 if *battery_price > 0 {
774 temp := data.Commodities["Shield Batterys"]
775 temp.BasePrice = *battery_price
776 data.Commodities["Shield Batterys"] = temp
778 data.p2i, data.i2p = IndexPlanets(&data.Planets, 0)
779 data.c2i, data.i2c = IndexCommodities(&data.Commodities, 1)
780 dims := DimensionSizes(data)
781 table := CreateStateTable(data, dims)
782 final_state := FinalState(dims)
783 best := FindBestState(data, dims, table, final_state)
786 print("Cannot acheive success criteria\n")
789 description := DescribePath(data, dims, table, best)
790 for i := len(description) - 1; i >= 0; i-- {
791 fmt.Println(description[i])
795 FighterAndShieldCost(data, dims, table, best)
796 EndEdensCost(data, dims, table, best)
797 VisitCost(data, dims, table, best)
798 EndLocationCost(data, dims, table, best)