return this.closed_trianglefan([apex].concat(base)).concat(
this.trianglefan(base.reverse()));
},
+ to_function: function(thing, make_indexer) {
+ // If thing is a point, just yield thing every time.
+ // If thing is a list of points && make_indexer, index into thing.
+ // If thing is already a function, just return it.
+ if (({}).toString.call(thing) === "[object Function]") {
+ return thing; // Already a function
+ }
+ if (make_indexer && Array.isArray(thing[0])) {
+ // Looks like a list of points.
+ return function(i) { return thing[i]; }
+ }
+ return function() { return thing; }
+ },
extrude: function(path, shape, shapenormals, pathnormals) {
var guts_result = nt3d._extrude_guts(path, shape, shapenormals, pathnormals);
return guts_result.points.concat(
nt3d.closed_quadstrip(nt3d.zip(guts_result.first_loop, guts_result.last_loop)));
},
- _fix_pathnormals: function(shapenormals, pathnormals) {
- // Fix pathnormals[i] to be perfectly perpendicular to
- // shapenormals[i]. This lets extrude callers be sloppy
- // with pathnormals, which can greatly simplify things.
- var fixedpathnormals = [];
- for (var i = 0; i < pathnormals.length; i++) {
- var proj = this.project(shapenormals[i], pathnormals[i]);
- fixedpathnormals[i] = this.sub(pathnormals[i], proj);
- }
- return fixedpathnormals;
- },
_extrude_guts: function(path, shape, shapenormals, pathnormals) {
- var fixedpathnormals = this._fix_pathnormals(shapenormals, pathnormals);
+ var shape_fun = this.to_function(shape, false);
+ var shapenormal_fun = this.to_function(shapenormals, true);
+ var pathnormal_fun = this.to_function(pathnormals, true);
var result = { points: [] };
var prev_loop;
for (var i = 0; i < path.length; i++) {
- // loop is shape in 3d with (0,0) at path[i], shape's
- // z axis in the direction of shapenormals[i], and
- // shape's x axis in the direction of pathnormals[i].
- // We tack [1,0,0] onto the end as a hack to see where
- // it ends up after rotation. This is removed later.
- var loop = shape.concat([[1,0,0]]);
+ var shapenormali = shapenormal_fun(i, path[i]);
+ var pathnormali = pathnormal_fun(i, path[i], shapenormali);
+
+ // Fix pathnormali to be perfectly perpendicular to
+ // shapenormali. pathnormali must be perpendicular to
+ // shapenormali or the second rotation will take loop
+ // back out of the shapenormali plane that the first
+ // rotation so carefully placed it in. But, letting
+ // callers be sloppy with the pathnormals can greatly
+ // simplify generating them -- so much so that you can
+ // often just pass a constant to use the same value
+ // along the whole path.
+ pathnormali = this.project_to_orthogonal(shapenormali, pathnormali);
+
+ var shapei = shape_fun(i, path[i], shapenormali, pathnormali);
+
+ // loop is shapei in 3d with (0,0) at path[i], shape's
+ // z axis in the direction of shapenormali, and shape's
+ // x axis in the direction of pathnormali. We tack
+ // [1,0,0] onto the end as a hack to see where it ends
+ // up after the first rotation. This is removed later.
+ var loop = shapei.concat([[1,0,0]]);
// This is done in three steps:
// 1. Rotate shape out of the xy plane so that [0,0,1]
- // becomes shapenormals[i]. This puts the shape in
+ // becomes shapenormali. This puts the shape in
// the correct plane, but does not constrain its
- // rotation about shapenormals[i].
- loop = this.rotate_onto(loop, [0,0,1], shapenormals[i]);
+ // rotation about shapenormali.
+ loop = this.rotate_onto(loop, [0,0,1], shapenormali);
var shapex = loop.pop();
- // 2. Rotate around shapenormals[i] so that [1,0,0]
- // becomes fixedpathnormals[i].
- loop = this.rotate_onto(loop, shapex, fixedpathnormals[i]);
+ // 2. Rotate around shapenormali so that [1,0,0]
+ // becomes pathnormali.
+ loop = this.rotate_onto(loop, shapex, pathnormali);
// (This would probably be faster and more numerically stable
// if the two rotations were applied as one combined operation
var a_magnitude = this.magnitude(a);
return this.scale(a, this.dot(a, b) / a_magnitude * a_magnitude);
},
+ project_to_orthogonal: function(a, b) {
+ // The nearest thing to b that is orthogonal to a
+ return this.sub(b, this.project(a, b));
+ },
translate: function(points, offset) {
var translated = [];
for (var i = 0; i < points.length; i++) {
<script type="text/javascript">
function torus_by_extrude(torus_radius, cross_section_radius, long_steps, short_steps) {
var path = nt3d.circle(torus_radius, long_steps);
- var cross_section = nt3d.circle(cross_section_radius, short_steps);
- var cross_section_normals = nt3d.rotate_about_origin(path, [0,0,1], Math.PI/2);
- var path_normals = [];
- path_normals.length = long_steps;
- for (var i = 0; i < long_steps; i++) {
- path_normals[i] = [0, 0, 1];
- }
- return nt3d.closed_extrude(path, cross_section, cross_section_normals, path_normals);
+ return nt3d.closed_extrude(
+ path,
+ nt3d.circle(cross_section_radius, short_steps),
+ nt3d.rotate_about_origin(path, [0,0,1], Math.PI/2),
+ [0, 0, 1]);
}
var params = [["Torus radus", 100],
["Cross section radius", 40],