}
return merge_tax_tables(t2, t1);
}
+
+function invert(table) {
+ // Here we solve
+ // net = m * gross + b
+ // for gross:
+ // net - b = m * gross
+ // (net - b) / m = gross
+ // and the calculate the inverse's bounds
+
+ const ms = table.map(([start, end, rate]) => 1 - rate);
+ const full_brackets = [[0]].concat(table.map(([start, end, rate]) => (end - start) * rate)).slice(0, table.length);
+ function sum_lower_brackets(remaining_brackets, acc = 0) {
+ if (remaining_brackets.length == 0) return [];
+ return [acc + remaining_brackets[0]].concat(sum_lower_brackets(remaining_brackets.slice(1), acc + remaining_brackets[0]));
+ }
+ const bs = sum_lower_brackets(full_brackets).map((lower_brackets, i) => {
+ const [start, end, rate] = table[i];
+ // Finding b:
+ // net = gross - lower_brackets - rate * (gross - start)
+ // net = gross - lower_brackets - rate * gross + rate * start
+ // net = gross - rate * gross - lower_brackets + rate * start
+ // net = (1 - rate) * gross - lower_brackets + rate * start
+ // net = m * gross - lower_brackets + rate * start
+ // \_____________________________/ - here is b
+ return rate * start - lower_brackets;
+ });
+ const inverse_table = table.map(([start, end, rate], i) => {
+ const m = ms[i];
+ const b = bs[i];
+ return [(start - b) / m, (end - b) / m, m, b];
+ });
+ return function(net) {
+ for (const [start, end, m, b] of inverse_table) {
+ if (start < net && net < end) {
+ return (net - b) / m;
+ }
+ }
+ };
+}
}
}
});
+
+test("invert", () => {
+ assert.strictEqual(invert([[ 0, Infinity, .1]])( 9), 10);
+ assert.strictEqual(invert([[10, Infinity, .1]])(19), 20);
+ assert.strictEqual(invert([[0, 100, .1], [100, Infinity, .2]])(170), 200);
+});