From: Scott Worley Date: Tue, 1 Nov 2011 22:55:27 +0000 (-0700) Subject: More haphazard development of untried code. X-Git-Url: http://git.scottworley.com/planeteer/commitdiff_plain/330093c150f51922dfd2edeca88aff1668e14979?hp=e346cb3782a1bfd09dd52b8ad65a96ea96105aa4 More haphazard development of untried code. --- diff --git a/planeteer.go b/planeteer.go index 3783a8c..7f343b9 100644 --- a/planeteer.go +++ b/planeteer.go @@ -23,6 +23,9 @@ import "json" import "os" import "strings" +var funds = flag.Int("funds", 0, + "Starting funds") + var start = flag.String("start", "", "The planet to start at") @@ -165,6 +168,9 @@ func bint(b bool) int { func DimensionSizes(data planet_data) []int { eden_capacity := data.Commodities["Eden Warp Units"].Limit + if *start_edens > eden_capacity { + eden_capacity = *start_edens + } cloak_capacity := bint(*cloak) dims := make([]int, NumDimensions) dims[Edens] = eden_capacity + 1 @@ -203,7 +209,7 @@ func EncodeIndex(dims, addr []int) int { if addr[0] > dims[0] { panic(0) } - for i := 1; i < len(dims); i++ { + for i := 1; i < NumDimensions; i++ { if addr[i] > dims[i] { panic(i) } @@ -213,8 +219,8 @@ func EncodeIndex(dims, addr []int) int { } func DecodeIndex(dims []int, index int) []int { - addr := make([]int, len(dims)) - for i := len(dims) - 1; i > 0; i-- { + addr := make([]int, NumDimensions) + for i := NumDimensions - 1; i > 0; i-- { addr[i] = index % dims[i] index /= dims[i] } @@ -222,105 +228,173 @@ func DecodeIndex(dims []int, index int) []int { return addr } -func InitializeStateTable(data planet_data, dims []int, table []State) { +func InitializeStateTable(data planet_data, dims []int) []State { + table := make([]State, StateTableSize(dims)) + + addr := make([]int, NumDimensions) + addr[Fuel] = *fuel + addr[Edens] = *start_edens + addr[Location] = data.p2i[*start] + table[EncodeIndex(dims, addr)].value = *funds + + return table } -/* Fill in the cell at address addr by looking at all the possible ways - * to reach this cell and selecting the best one. +/* These four fill procedures fill in the cell at address addr by + * looking at all the possible ways to reach this cell and selecting + * the best one. * * The other obvious implementation choice is to do this the other way * around -- for each cell, conditionally overwrite all the other cells * that are reachable *from* the considered cell. We choose gathering * reads over scattering writes to avoid having to take a bunch of locks. - * - * The order that we check things here matters only for value ties. We - * keep the first best path. So when action order doesn't matter, the - * check that is performed first here will appear in the output first. */ -func FillStateTableCell(data planet_data, dims []int, table []State, addr []int) { + +func UpdateCell(table []State, here, there, value_difference int) { + possible_value := table[there].value + value_difference + if table[there].value > 0 && possible_value > table[here].value { + table[here].value = possible_value + table[here].from = there + } +} + +func FillCellByArriving(data planet_data, dims []int, table []State, addr []int) { my_index := EncodeIndex(dims, addr) other := make([]int, NumDimensions) copy(other, addr) /* Travel here via a 2-fuel unit jump */ - if addr[Fuel] + 2 < dims[Fuel] { + if addr[Fuel]+2 < dims[Fuel] { other[Fuel] = addr[Fuel] + 2 - for p := 0; p < dims[Location]; p++ { - other[Location] = p - if table[EncodeIndex(dims, other)].value > table[my_index].value { - table[my_index].value = table[EncodeIndex(dims, other)].value - table[my_index].from = EncodeIndex(dims, other) - } + for other[Location] = 0; other[Location] < dims[Location]; other[Location]++ { + UpdateCell(table, my_index, EncodeIndex(dims, other), 0) } other[Location] = addr[Location] other[Fuel] = addr[Fuel] } /* Travel here via a hidey hole */ - if addr[Fuel] + 1 < dims[Fuel] { + if addr[Fuel]+1 < dims[Fuel] { hole_index := (dims[Fuel] - 1) - (addr[Fuel] + 1) if hole_index < len(flight_plan()) { other[Fuel] = addr[Fuel] + 1 other[Location] = data.p2i[flight_plan()[hole_index]] - if table[EncodeIndex(dims, other)].value > table[my_index].value { - table[my_index].value = table[EncodeIndex(dims, other)].value - table[my_index].from = EncodeIndex(dims, other) - } + UpdateCell(table, my_index, EncodeIndex(dims, other), 0) + other[Location] = addr[Location] other[Fuel] = addr[Fuel] } } /* Travel here via Eden Warp Unit */ - /* Silly: Dump Eden warp units */ + for other[Edens] = addr[Edens] + 1; other[Edens] < dims[Edens]; other[Edens]++ { + for other[Location] = 0; other[Location] < dims[Location]; other[Location]++ { + UpdateCell(table, my_index, EncodeIndex(dims, other), 0) + } + } + other[Location] = addr[Location] + other[Edens] = addr[Edens] +} + +func FillCellBySelling(data planet_data, dims []int, table []State, addr []int) { + if addr[Hold] > 0 { + // Can't sell and still have cargo + return + } + if addr[UnusedCargo] > 0 { + // Can't sell everything and still have 'unused' holds + return + } + my_index := EncodeIndex(dims, addr) + other := make([]int, NumDimensions) + copy(other, addr) + planet := data.i2p[addr[Location]] + for other[Hold] = 0; other[Hold] < dims[Hold]; other[Hold]++ { + commodity := data.i2c[other[Hold]] + if !data.Commodities[commodity].CanSell { + // TODO: Dump cargo + continue + } + relative_price, available := data.Planets[planet].RelativePrices[commodity] + if !available { + continue + } + base_price := data.Commodities[commodity].BasePrice + absolute_price := relative_price * base_price + sell_price := int(float64(absolute_price) * 0.9) + + for other[UnusedCargo] = 0; other[UnusedCargo] < dims[UnusedCargo]; other[UnusedCargo]++ { + + quantity := *hold - other[UnusedCargo] // TODO: Partial sales + sale_value := quantity * sell_price + UpdateCell(table, my_index, EncodeIndex(dims, other), sale_value) + } + } + other[UnusedCargo] = addr[UnusedCargo] +} + +func FillCellByBuying(data planet_data, dims []int, table []State, addr []int) { + if addr[Hold] == 0 { + // Can't buy and then have nothing + return + } + my_index := EncodeIndex(dims, addr) + other := make([]int, NumDimensions) + copy(other, addr) + planet := data.i2p[addr[Location]] + commodity := data.i2c[addr[Hold]] + if !data.Commodities[commodity].CanSell { + return + } + relative_price, available := data.Planets[planet].RelativePrices[commodity] + if !available { + return + } + base_price := data.Commodities[commodity].BasePrice + absolute_price := relative_price * base_price + quantity := *hold - addr[UnusedCargo] + total_price := quantity * absolute_price + other[Hold] = 0 + UpdateCell(table, my_index, EncodeIndex(dims, other), -total_price) +} + +func FillCellByMisc(data planet_data, dims []int, table []State, addr []int) { /* Buy Eden warp units */ /* Buy a Device of Cloaking */ /* Silly: Dump a Device of Cloaking */ /* Buy Fighter Drones */ /* Buy Shield Batteries */ - if addr[Hold] == 0 { - /* Sell or dump things */ - // for commodity := range data.Commodities { } - } else { - /* Buy this thing */ - } /* Visit this planet */ } -func FillStateTable2(data planet_data, dims []int, table []State, -fuel_remaining, edens_remaining int, planet string, barrier chan<- bool) { - /* The dimension nesting order up to this point is important. - * Beyond this point, it's not important. - * - * It is very important when iterating through the Hold dimension - * to visit the null commodity (empty hold) first. Visiting the - * null commodity represents selling. Visiting it first gets the - * action order correct: arrive, sell, buy, leave. Visiting the - * null commodity after another commodity would evaluate the action - * sequence: arrive, buy, sell, leave. This is a useless action - * sequence. Because we visit the null commodity first, we do not - * consider these action sequences. - */ - eden_capacity := data.Commodities["Eden Warp Units"].Limit - addr := make([]int, len(dims)) - addr[Edens] = edens_remaining - addr[Fuel] = fuel_remaining - addr[Location] = data.p2i[planet] +func FillStateTable2Iteration(data planet_data, dims []int, table []State, +addr []int, f func(planet_data, []int, []State, []int)) { + /* TODO: Justify the safety of the combination of this dimension + * iteration and the various phases f. */ for addr[Hold] = 0; addr[Hold] < dims[Hold]; addr[Hold]++ { for addr[Cloaks] = 0; addr[Cloaks] < dims[Cloaks]; addr[Cloaks]++ { for addr[UnusedCargo] = 0; addr[UnusedCargo] < dims[UnusedCargo]; addr[UnusedCargo]++ { - if addr[Edens]+addr[Cloaks]+addr[UnusedCargo] <= - eden_capacity+1 { - for addr[NeedFighters] = 0; addr[NeedFighters] < dims[NeedFighters]; addr[NeedFighters]++ { - for addr[NeedShields] = 0; addr[NeedShields] < dims[NeedShields]; addr[NeedShields]++ { - for addr[Visit] = 0; addr[Visit] < dims[Visit]; addr[Visit]++ { - FillStateTableCell(data, dims, table, addr) - } + for addr[NeedFighters] = 0; addr[NeedFighters] < dims[NeedFighters]; addr[NeedFighters]++ { + for addr[NeedShields] = 0; addr[NeedShields] < dims[NeedShields]; addr[NeedShields]++ { + for addr[Visit] = 0; addr[Visit] < dims[Visit]; addr[Visit]++ { + f(data, dims, table, addr) } } } } } } +} + +func FillStateTable2(data planet_data, dims []int, table []State, +fuel_remaining, edens_remaining int, planet string, barrier chan<- bool) { + addr := make([]int, len(dims)) + addr[Edens] = edens_remaining + addr[Fuel] = fuel_remaining + addr[Location] = data.p2i[planet] + FillStateTable2Iteration(data, dims, table, addr, FillCellByArriving) + FillStateTable2Iteration(data, dims, table, addr, FillCellBySelling) + FillStateTable2Iteration(data, dims, table, addr, FillCellByBuying) + FillStateTable2Iteration(data, dims, table, addr, FillCellByMisc) barrier <- true } @@ -362,65 +436,6 @@ func FillStateTable1(data planet_data, dims []int, table []State) { print("\n") } -/* What is the value of hauling 'commodity' from 'from' to 'to'? - * Take into account the available funds and the available cargo space. */ -func TradeValue(data planet_data, -from, to Planet, -commodity string, -initial_funds, max_quantity int) int { - if !data.Commodities[commodity].CanSell { - return 0 - } - from_relative_price, from_available := from.RelativePrices[commodity] - if !from_available { - return 0 - } - to_relative_price, to_available := to.RelativePrices[commodity] - if !to_available { - return 0 - } - - base_price := data.Commodities[commodity].BasePrice - from_absolute_price := from_relative_price * base_price - to_absolute_price := to_relative_price * base_price - buy_price := from_absolute_price - sell_price := int(float64(to_absolute_price) * 0.9) - var can_afford int = initial_funds / buy_price - quantity := can_afford - if quantity > max_quantity { - quantity = max_quantity - } - return (sell_price - buy_price) * max_quantity -} - -func FindBestTrades(data planet_data) [][]string { - // TODO: We can't cache this because this can change based on available funds. - best := make([][]string, len(data.Planets)) - for from := range data.Planets { - best[data.p2i[from]] = make([]string, len(data.Planets)) - for to := range data.Planets { - best_gain := 0 - price_list := data.Planets[from].RelativePrices - if len(data.Planets[to].RelativePrices) < len(data.Planets[from].RelativePrices) { - price_list = data.Planets[to].RelativePrices - } - for commodity := range price_list { - gain := TradeValue(data, - data.Planets[from], - data.Planets[to], - commodity, - 10000000, - 1) - if gain > best_gain { - best[data.p2i[from]][data.p2i[to]] = commodity - gain = best_gain - } - } - } - } - return best -} - // (Example of a use case for generics in Go) func IndexPlanets(m *map[string]Planet, start_at int) (map[string]int, []string) { e2i := make(map[string]int, len(*m)+start_at) @@ -451,20 +466,8 @@ func main() { data.p2i, data.i2p = IndexPlanets(&data.Planets, 0) data.c2i, data.i2c = IndexCommodities(&data.Commodities, 1) dims := DimensionSizes(data) - table := make([]State, StateTableSize(dims)) - InitializeStateTable(data, dims, table) + table := InitializeStateTable(data, dims) FillStateTable1(data, dims, table) print("Going to print state table...") fmt.Printf("%v", table) - best_trades := FindBestTrades(data) - - for from := range data.Planets { - for to := range data.Planets { - best_trade := "(nothing)" - if best_trades[data.p2i[from]][data.p2i[to]] != "" { - best_trade = best_trades[data.p2i[from]][data.p2i[to]] - } - fmt.Printf("%s to %s: %s\n", from, to, best_trade) - } - } }