X-Git-Url: http://git.scottworley.com/planeteer/blobdiff_plain/e346cb3782a1bfd09dd52b8ad65a96ea96105aa4..809e65f43c41047a34e0731e11e2f3639e7e0b8a:/planeteer.go diff --git a/planeteer.go b/planeteer.go index 3783a8c..d17c5a5 100644 --- a/planeteer.go +++ b/planeteer.go @@ -23,13 +23,16 @@ import "json" import "os" import "strings" +var funds = flag.Int("funds", 0, + "Starting funds") + var start = flag.String("start", "", "The planet to start at") var flight_plan_string = flag.String("flight_plan", "", "Your hidey-holes for the day, comma-separated.") -var end = flag.String("end", "", +var end_string = flag.String("end", "", "A comma-separated list of acceptable ending planets.") var planet_data_file = flag.String("planet_data_file", "planet-data", @@ -57,18 +60,29 @@ var visit_string = flag.String("visit", "", func visit() []string { if *visit_string == "" { - return []string{} + return nil } return strings.Split(*visit_string, ",") } func flight_plan() []string { if *flight_plan_string == "" { - return []string{} + return nil } return strings.Split(*flight_plan_string, ",") } +func end() map[string]bool { + if *end_string == "" { + return nil + } + m := make(map[string]bool) + for _, p := range strings.Split(*end_string, ",") { + m[p] = true + } + return m +} + type Commodity struct { BasePrice int CanSell bool @@ -165,6 +179,9 @@ func bint(b bool) int { func DimensionSizes(data planet_data) []int { eden_capacity := data.Commodities["Eden Warp Units"].Limit + if *start_edens > eden_capacity { + eden_capacity = *start_edens + } cloak_capacity := bint(*cloak) dims := make([]int, NumDimensions) dims[Edens] = eden_capacity + 1 @@ -172,7 +189,7 @@ func DimensionSizes(data planet_data) []int { dims[UnusedCargo] = eden_capacity + cloak_capacity + 1 dims[Fuel] = *fuel + 1 dims[Location] = len(data.Planets) - dims[Hold] = len(data.Commodities) + dims[Hold] = len(data.Commodities) + 1 dims[NeedFighters] = bint(*drones > 0) + 1 dims[NeedShields] = bint(*batteries > 0) + 1 dims[Visit] = 1 << uint(len(visit())) @@ -203,7 +220,7 @@ func EncodeIndex(dims, addr []int) int { if addr[0] > dims[0] { panic(0) } - for i := 1; i < len(dims); i++ { + for i := 1; i < NumDimensions; i++ { if addr[i] > dims[i] { panic(i) } @@ -213,8 +230,8 @@ func EncodeIndex(dims, addr []int) int { } func DecodeIndex(dims []int, index int) []int { - addr := make([]int, len(dims)) - for i := len(dims) - 1; i > 0; i-- { + addr := make([]int, NumDimensions) + for i := NumDimensions - 1; i > 0; i-- { addr[i] = index % dims[i] index /= dims[i] } @@ -222,34 +239,47 @@ func DecodeIndex(dims []int, index int) []int { return addr } -func InitializeStateTable(data planet_data, dims []int, table []State) { +func InitializeStateTable(data planet_data, dims []int) []State { + table := make([]State, StateTableSize(dims)) + + addr := make([]int, NumDimensions) + addr[Fuel] = *fuel + addr[Edens] = *start_edens + addr[Location] = data.p2i[*start] + table[EncodeIndex(dims, addr)].value = *funds + + return table } -/* Fill in the cell at address addr by looking at all the possible ways - * to reach this cell and selecting the best one. +/* These four fill procedures fill in the cell at address addr by + * looking at all the possible ways to reach this cell and selecting + * the best one. * * The other obvious implementation choice is to do this the other way * around -- for each cell, conditionally overwrite all the other cells * that are reachable *from* the considered cell. We choose gathering * reads over scattering writes to avoid having to take a bunch of locks. - * - * The order that we check things here matters only for value ties. We - * keep the first best path. So when action order doesn't matter, the - * check that is performed first here will appear in the output first. */ -func FillStateTableCell(data planet_data, dims []int, table []State, addr []int) { + +func UpdateCell(table []State, here, there, value_difference int) { + possible_value := table[there].value + value_difference + if table[there].value > 0 && possible_value > table[here].value { + table[here].value = possible_value + table[here].from = there + } +} + +func FillCellByArriving(data planet_data, dims []int, table []State, addr []int) { my_index := EncodeIndex(dims, addr) other := make([]int, NumDimensions) copy(other, addr) /* Travel here via a 2-fuel unit jump */ - if addr[Fuel] + 2 < dims[Fuel] { + if addr[Fuel]+2 < dims[Fuel] { other[Fuel] = addr[Fuel] + 2 - for p := 0; p < dims[Location]; p++ { - other[Location] = p - if table[EncodeIndex(dims, other)].value > table[my_index].value { - table[my_index].value = table[EncodeIndex(dims, other)].value - table[my_index].from = EncodeIndex(dims, other) + for other[Location] = 0; other[Location] < dims[Location]; other[Location]++ { + if data.Planets[data.i2p[addr[Location]]].BeaconOn { + UpdateCell(table, my_index, EncodeIndex(dims, other), 0) } } other[Location] = addr[Location] @@ -257,70 +287,151 @@ func FillStateTableCell(data planet_data, dims []int, table []State, addr []int) } /* Travel here via a hidey hole */ - if addr[Fuel] + 1 < dims[Fuel] { + if addr[Fuel]+1 < dims[Fuel] { hole_index := (dims[Fuel] - 1) - (addr[Fuel] + 1) - if hole_index < len(flight_plan()) { + if hole_index < len(flight_plan()) && addr[Location] == data.p2i[flight_plan()[hole_index]] { other[Fuel] = addr[Fuel] + 1 - other[Location] = data.p2i[flight_plan()[hole_index]] - if table[EncodeIndex(dims, other)].value > table[my_index].value { - table[my_index].value = table[EncodeIndex(dims, other)].value - table[my_index].from = EncodeIndex(dims, other) + for other[Location] = 0; other[Location] < dims[Location]; other[Location]++ { + UpdateCell(table, my_index, EncodeIndex(dims, other), 0) } + other[Location] = addr[Location] other[Fuel] = addr[Fuel] } } /* Travel here via Eden Warp Unit */ - /* Silly: Dump Eden warp units */ + if addr[Edens]+1 < dims[Edens] { + _, available := data.Planets[data.i2p[addr[Location]]].RelativePrices["Eden Warp Units"] + if !available { + other[Edens] = addr[Edens] + 1 + for other[Location] = 0; other[Location] < dims[Location]; other[Location]++ { + UpdateCell(table, my_index, EncodeIndex(dims, other), 0) + } + other[Location] = addr[Location] + other[Edens] = addr[Edens] + } + } +} + +func FillCellBySelling(data planet_data, dims []int, table []State, addr []int) { + if addr[Hold] > 0 { + // Can't sell and still have cargo + return + } + if addr[UnusedCargo] > 0 { + // Can't sell everything and still have 'unused' holds + return + } + my_index := EncodeIndex(dims, addr) + other := make([]int, NumDimensions) + copy(other, addr) + planet := data.i2p[addr[Location]] + for other[Hold] = 0; other[Hold] < dims[Hold]; other[Hold]++ { + commodity := data.i2c[other[Hold]] + if !data.Commodities[commodity].CanSell { + // TODO: Dump cargo + continue + } + relative_price, available := data.Planets[planet].RelativePrices[commodity] + if !available { + continue + } + base_price := data.Commodities[commodity].BasePrice + absolute_price := float64(base_price) * float64(relative_price) / 100.0 + sell_price := int(absolute_price * 0.9) + + for other[UnusedCargo] = 0; other[UnusedCargo] < dims[UnusedCargo]; other[UnusedCargo]++ { + + quantity := *hold - (other[UnusedCargo] + other[Cloaks] + other[Edens]) + sale_value := quantity * sell_price + UpdateCell(table, my_index, EncodeIndex(dims, other), sale_value) + } + } + other[UnusedCargo] = addr[UnusedCargo] +} + +func FillCellByBuying(data planet_data, dims []int, table []State, addr []int) { + if addr[Hold] == 0 { + // Can't buy and then have nothing + return + } + my_index := EncodeIndex(dims, addr) + other := make([]int, NumDimensions) + copy(other, addr) + planet := data.i2p[addr[Location]] + commodity := data.i2c[addr[Hold]] + if !data.Commodities[commodity].CanSell { + return + } + relative_price, available := data.Planets[planet].RelativePrices[commodity] + if !available { + return + } + base_price := data.Commodities[commodity].BasePrice + absolute_price := int(float64(base_price) * float64(relative_price) / 100.0) + quantity := *hold - (addr[UnusedCargo] + addr[Cloaks] + addr[Edens]) + total_price := quantity * absolute_price + other[Hold] = 0 + other[UnusedCargo] = 0 + UpdateCell(table, my_index, EncodeIndex(dims, other), -total_price) + other[UnusedCargo] = addr[UnusedCargo] + other[Hold] = addr[Hold] +} + +func FillCellByMisc(data planet_data, dims []int, table []State, addr []int) { + my_index := EncodeIndex(dims, addr) + other := make([]int, NumDimensions) + copy(other, addr) /* Buy Eden warp units */ /* Buy a Device of Cloaking */ + if addr[Cloaks] == 1 && addr[UnusedCargo] < dims[UnusedCargo]-1 { + relative_price, available := data.Planets[data.i2p[addr[Location]]].RelativePrices["Device Of Cloakings"] + if available { + absolute_price := int(float64(data.Commodities["Device Of Cloakings"].BasePrice) * float64(relative_price) / 100.0) + other[Cloaks] = 0 + if other[Hold] != 0 { + other[UnusedCargo] = addr[UnusedCargo] + 1 + } + UpdateCell(table, my_index, EncodeIndex(dims, other), -absolute_price) + other[UnusedCargo] = addr[UnusedCargo] + other[Cloaks] = addr[Cloaks] + } + } /* Silly: Dump a Device of Cloaking */ /* Buy Fighter Drones */ /* Buy Shield Batteries */ - if addr[Hold] == 0 { - /* Sell or dump things */ - // for commodity := range data.Commodities { } - } else { - /* Buy this thing */ - } /* Visit this planet */ } -func FillStateTable2(data planet_data, dims []int, table []State, -fuel_remaining, edens_remaining int, planet string, barrier chan<- bool) { - /* The dimension nesting order up to this point is important. - * Beyond this point, it's not important. - * - * It is very important when iterating through the Hold dimension - * to visit the null commodity (empty hold) first. Visiting the - * null commodity represents selling. Visiting it first gets the - * action order correct: arrive, sell, buy, leave. Visiting the - * null commodity after another commodity would evaluate the action - * sequence: arrive, buy, sell, leave. This is a useless action - * sequence. Because we visit the null commodity first, we do not - * consider these action sequences. - */ - eden_capacity := data.Commodities["Eden Warp Units"].Limit - addr := make([]int, len(dims)) - addr[Edens] = edens_remaining - addr[Fuel] = fuel_remaining - addr[Location] = data.p2i[planet] +func FillStateTable2Iteration(data planet_data, dims []int, table []State, +addr []int, f func(planet_data, []int, []State, []int)) { + /* TODO: Justify the safety of the combination of this dimension + * iteration and the various phases f. */ for addr[Hold] = 0; addr[Hold] < dims[Hold]; addr[Hold]++ { for addr[Cloaks] = 0; addr[Cloaks] < dims[Cloaks]; addr[Cloaks]++ { for addr[UnusedCargo] = 0; addr[UnusedCargo] < dims[UnusedCargo]; addr[UnusedCargo]++ { - if addr[Edens]+addr[Cloaks]+addr[UnusedCargo] <= - eden_capacity+1 { - for addr[NeedFighters] = 0; addr[NeedFighters] < dims[NeedFighters]; addr[NeedFighters]++ { - for addr[NeedShields] = 0; addr[NeedShields] < dims[NeedShields]; addr[NeedShields]++ { - for addr[Visit] = 0; addr[Visit] < dims[Visit]; addr[Visit]++ { - FillStateTableCell(data, dims, table, addr) - } + for addr[NeedFighters] = 0; addr[NeedFighters] < dims[NeedFighters]; addr[NeedFighters]++ { + for addr[NeedShields] = 0; addr[NeedShields] < dims[NeedShields]; addr[NeedShields]++ { + for addr[Visit] = 0; addr[Visit] < dims[Visit]; addr[Visit]++ { + f(data, dims, table, addr) } } } } } } +} + +func FillStateTable2(data planet_data, dims []int, table []State, +fuel_remaining, edens_remaining int, planet string, barrier chan<- bool) { + addr := make([]int, len(dims)) + addr[Edens] = edens_remaining + addr[Fuel] = fuel_remaining + addr[Location] = data.p2i[planet] + FillStateTable2Iteration(data, dims, table, addr, FillCellByArriving) + FillStateTable2Iteration(data, dims, table, addr, FillCellBySelling) + FillStateTable2Iteration(data, dims, table, addr, FillCellByBuying) + FillStateTable2Iteration(data, dims, table, addr, FillCellByMisc) barrier <- true } @@ -356,69 +467,81 @@ func FillStateTable1(data planet_data, dims []int, table []State) { <-barrier } work_done++ - fmt.Printf("\r%3.0f%%", 100*work_done/work_units) + print(fmt.Sprintf("\r%3.0f%%", 100*work_done/work_units)) } } print("\n") } -/* What is the value of hauling 'commodity' from 'from' to 'to'? - * Take into account the available funds and the available cargo space. */ -func TradeValue(data planet_data, -from, to Planet, -commodity string, -initial_funds, max_quantity int) int { - if !data.Commodities[commodity].CanSell { - return 0 - } - from_relative_price, from_available := from.RelativePrices[commodity] - if !from_available { - return 0 - } - to_relative_price, to_available := to.RelativePrices[commodity] - if !to_available { - return 0 +func FindBestState(data planet_data, dims []int, table []State) int { + addr := make([]int, NumDimensions) + addr[Edens] = *end_edens + addr[Cloaks] = dims[Cloaks] - 1 + addr[NeedFighters] = dims[NeedFighters] - 1 + addr[NeedShields] = dims[NeedShields] - 1 + addr[Visit] = dims[Visit] - 1 + // Fuel, Hold, UnusedCargo left at 0 + max_index := -1 + max_value := 0 + for addr[Location] = 0; addr[Location] < dims[Location]; addr[Location]++ { + if len(end()) == 0 || end()[data.i2p[addr[Location]]] { + index := EncodeIndex(dims, addr) + if table[index].value > max_value { + max_value = table[index].value + max_index = index + } + } } + return max_index +} - base_price := data.Commodities[commodity].BasePrice - from_absolute_price := from_relative_price * base_price - to_absolute_price := to_relative_price * base_price - buy_price := from_absolute_price - sell_price := int(float64(to_absolute_price) * 0.9) - var can_afford int = initial_funds / buy_price - quantity := can_afford - if quantity > max_quantity { - quantity = max_quantity - } - return (sell_price - buy_price) * max_quantity +func Commas(n int) (s string) { + r := n % 1000 + n /= 1000 + for n > 0 { + s = fmt.Sprintf(",%03d", r) + s + r = n % 1000 + n /= 1000 + } + s = fmt.Sprint(r) + s + return } -func FindBestTrades(data planet_data) [][]string { - // TODO: We can't cache this because this can change based on available funds. - best := make([][]string, len(data.Planets)) - for from := range data.Planets { - best[data.p2i[from]] = make([]string, len(data.Planets)) - for to := range data.Planets { - best_gain := 0 - price_list := data.Planets[from].RelativePrices - if len(data.Planets[to].RelativePrices) < len(data.Planets[from].RelativePrices) { - price_list = data.Planets[to].RelativePrices +func DescribePath(data planet_data, dims []int, table []State, start int) (description []string) { + for index := start; index > 0 && table[index].from > 0; index = table[index].from { + line := fmt.Sprintf("%13v", Commas(table[index].value)) + addr := DecodeIndex(dims, index) + prev := DecodeIndex(dims, table[index].from) + if addr[Location] != prev[Location] { + from := data.i2p[prev[Location]] + to := data.i2p[addr[Location]] + if addr[Fuel] != prev[Fuel] { + line += fmt.Sprintf(" Jump from %v to %v (%v reactor units)", from, to, prev[Fuel]-addr[Fuel]) + } else if addr[Edens] != prev[Edens] { + line += fmt.Sprintf(" Eden warp from %v to %v", from, to) + } else { + panic("Traveling without fuel?") } - for commodity := range price_list { - gain := TradeValue(data, - data.Planets[from], - data.Planets[to], - commodity, - 10000000, - 1) - if gain > best_gain { - best[data.p2i[from]][data.p2i[to]] = commodity - gain = best_gain - } + } + if addr[Hold] != prev[Hold] { + if addr[Hold] == 0 { + quantity := *hold - (prev[UnusedCargo] + prev[Edens] + prev[Cloaks]) + line += fmt.Sprintf(" Sell %v %v", quantity, data.i2c[prev[Hold]]) + } else if prev[Hold] == 0 { + quantity := *hold - (addr[UnusedCargo] + addr[Edens] + addr[Cloaks]) + line += fmt.Sprintf(" Buy %v %v", quantity, data.i2c[addr[Hold]]) + } else { + panic("Switched cargo?") } + } + if addr[Cloaks] == 1 && prev[Cloaks] == 0 { + // TODO: Dump cloaks, convert from cargo? + line += " Buy a Cloak" + } + description = append(description, line) } - return best + return } // (Example of a use case for generics in Go) @@ -451,20 +574,15 @@ func main() { data.p2i, data.i2p = IndexPlanets(&data.Planets, 0) data.c2i, data.i2c = IndexCommodities(&data.Commodities, 1) dims := DimensionSizes(data) - table := make([]State, StateTableSize(dims)) - InitializeStateTable(data, dims, table) + table := InitializeStateTable(data, dims) FillStateTable1(data, dims, table) - print("Going to print state table...") - fmt.Printf("%v", table) - best_trades := FindBestTrades(data) - - for from := range data.Planets { - for to := range data.Planets { - best_trade := "(nothing)" - if best_trades[data.p2i[from]][data.p2i[to]] != "" { - best_trade = best_trades[data.p2i[from]][data.p2i[to]] - } - fmt.Printf("%s to %s: %s\n", from, to, best_trade) + best := FindBestState(data, dims, table) + if best == -1 { + print("Cannot acheive success criteria\n") + } else { + description := DescribePath(data, dims, table, best) + for i := len(description) - 1; i >= 0; i-- { + fmt.Println(description[i]) } } }