X-Git-Url: http://git.scottworley.com/planeteer/blobdiff_plain/a1f10151d4dbeca1358c1159c38f19aed1085b30..330093c150f51922dfd2edeca88aff1668e14979:/planeteer.go diff --git a/planeteer.go b/planeteer.go index bbbe01f..7f343b9 100644 --- a/planeteer.go +++ b/planeteer.go @@ -23,9 +23,15 @@ import "json" import "os" import "strings" +var funds = flag.Int("funds", 0, + "Starting funds") + var start = flag.String("start", "", "The planet to start at") +var flight_plan_string = flag.String("flight_plan", "", + "Your hidey-holes for the day, comma-separated.") + var end = flag.String("end", "", "A comma-separated list of acceptable ending planets.") @@ -53,9 +59,19 @@ var visit_string = flag.String("visit", "", "A comma-separated list of planets to make sure to visit") func visit() []string { + if *visit_string == "" { + return []string{} + } return strings.Split(*visit_string, ",") } +func flight_plan() []string { + if *flight_plan_string == "" { + return []string{} + } + return strings.Split(*flight_plan_string, ",") +} + type Commodity struct { BasePrice int CanSell bool @@ -114,6 +130,17 @@ func ReadData() (data planet_data) { * grouped together in large blocks. This keeps them from polluting * cache lines, and if they are large enough, prevent the memory manager * from allocating pages for these areas at all. + * + * If the table gets too big to fit in RAM: + * * Combine the Edens, Cloaks, and UnusedCargo dimensions. Of the + * 24 combinations, only 15 are legal: a 38% savings. + * * Reduce the size of the Fuel dimension to 3. We only ever look + * backwards 2 units, so just rotate the logical values through + * the same 3 physical addresses. This is good for an 82% savings. + * * Reduce the size of the Edens dimension from 3 to 2, for the + * same reasons as Fuel above. 33% savings. + * * Buy more ram. (Just sayin'. It's cheaper than you think.) + * */ // The official list of dimensions: @@ -141,6 +168,9 @@ func bint(b bool) int { func DimensionSizes(data planet_data) []int { eden_capacity := data.Commodities["Eden Warp Units"].Limit + if *start_edens > eden_capacity { + eden_capacity = *start_edens + } cloak_capacity := bint(*cloak) dims := make([]int, NumDimensions) dims[Edens] = eden_capacity + 1 @@ -163,28 +193,34 @@ func DimensionSizes(data planet_data) []int { } func StateTableSize(dims []int) int { - sum := 0 + product := 1 for _, size := range dims { - sum += size + product *= size } - return sum + return product } type State struct { - funds, from int + value, from int } func EncodeIndex(dims, addr []int) int { index := addr[0] - for i := 1; i < len(dims); i++ { + if addr[0] > dims[0] { + panic(0) + } + for i := 1; i < NumDimensions; i++ { + if addr[i] > dims[i] { + panic(i) + } index = index*dims[i] + addr[i] } return index } func DecodeIndex(dims []int, index int) []int { - addr := make([]int, len(dims)) - for i := len(dims) - 1; i > 0; i-- { + addr := make([]int, NumDimensions) + for i := NumDimensions - 1; i > 0; i-- { addr[i] = index % dims[i] index /= dims[i] } @@ -192,44 +228,173 @@ func DecodeIndex(dims []int, index int) []int { return addr } -func FillStateCell(data planet_data, dims []int, table []State, addr []int) { +func InitializeStateTable(data planet_data, dims []int) []State { + table := make([]State, StateTableSize(dims)) + + addr := make([]int, NumDimensions) + addr[Fuel] = *fuel + addr[Edens] = *start_edens + addr[Location] = data.p2i[*start] + table[EncodeIndex(dims, addr)].value = *funds + + return table } -func FillStateTable2(data planet_data, dims []int, table []State, -fuel_remaining, edens_remaining int, planet string, barrier chan<- bool) { - /* The dimension nesting order up to this point is important. - * Beyond this point, it's not important. - * - * It is very important when iterating through the Hold dimension - * to visit the null commodity (empty hold) first. Visiting the - * null commodity represents selling. Visiting it first gets the - * action order correct: arrive, sell, buy, leave. Visiting the - * null commodity after another commodity would evaluate the action - * sequence: arrive, buy, sell, leave. This is a useless action - * sequence. Because we visit the null commodity first, we do not - * consider these action sequences. - */ - eden_capacity := data.Commodities["Eden Warp Units"].Limit - addr := make([]int, len(dims)) - addr[Edens] = edens_remaining - addr[Fuel] = fuel_remaining - addr[Location] = data.p2i[planet] +/* These four fill procedures fill in the cell at address addr by + * looking at all the possible ways to reach this cell and selecting + * the best one. + * + * The other obvious implementation choice is to do this the other way + * around -- for each cell, conditionally overwrite all the other cells + * that are reachable *from* the considered cell. We choose gathering + * reads over scattering writes to avoid having to take a bunch of locks. + */ + +func UpdateCell(table []State, here, there, value_difference int) { + possible_value := table[there].value + value_difference + if table[there].value > 0 && possible_value > table[here].value { + table[here].value = possible_value + table[here].from = there + } +} + +func FillCellByArriving(data planet_data, dims []int, table []State, addr []int) { + my_index := EncodeIndex(dims, addr) + other := make([]int, NumDimensions) + copy(other, addr) + + /* Travel here via a 2-fuel unit jump */ + if addr[Fuel]+2 < dims[Fuel] { + other[Fuel] = addr[Fuel] + 2 + for other[Location] = 0; other[Location] < dims[Location]; other[Location]++ { + UpdateCell(table, my_index, EncodeIndex(dims, other), 0) + } + other[Location] = addr[Location] + other[Fuel] = addr[Fuel] + } + + /* Travel here via a hidey hole */ + if addr[Fuel]+1 < dims[Fuel] { + hole_index := (dims[Fuel] - 1) - (addr[Fuel] + 1) + if hole_index < len(flight_plan()) { + other[Fuel] = addr[Fuel] + 1 + other[Location] = data.p2i[flight_plan()[hole_index]] + UpdateCell(table, my_index, EncodeIndex(dims, other), 0) + other[Location] = addr[Location] + other[Fuel] = addr[Fuel] + } + } + + /* Travel here via Eden Warp Unit */ + for other[Edens] = addr[Edens] + 1; other[Edens] < dims[Edens]; other[Edens]++ { + for other[Location] = 0; other[Location] < dims[Location]; other[Location]++ { + UpdateCell(table, my_index, EncodeIndex(dims, other), 0) + } + } + other[Location] = addr[Location] + other[Edens] = addr[Edens] +} + +func FillCellBySelling(data planet_data, dims []int, table []State, addr []int) { + if addr[Hold] > 0 { + // Can't sell and still have cargo + return + } + if addr[UnusedCargo] > 0 { + // Can't sell everything and still have 'unused' holds + return + } + my_index := EncodeIndex(dims, addr) + other := make([]int, NumDimensions) + copy(other, addr) + planet := data.i2p[addr[Location]] + for other[Hold] = 0; other[Hold] < dims[Hold]; other[Hold]++ { + commodity := data.i2c[other[Hold]] + if !data.Commodities[commodity].CanSell { + // TODO: Dump cargo + continue + } + relative_price, available := data.Planets[planet].RelativePrices[commodity] + if !available { + continue + } + base_price := data.Commodities[commodity].BasePrice + absolute_price := relative_price * base_price + sell_price := int(float64(absolute_price) * 0.9) + + for other[UnusedCargo] = 0; other[UnusedCargo] < dims[UnusedCargo]; other[UnusedCargo]++ { + + quantity := *hold - other[UnusedCargo] // TODO: Partial sales + sale_value := quantity * sell_price + UpdateCell(table, my_index, EncodeIndex(dims, other), sale_value) + } + } + other[UnusedCargo] = addr[UnusedCargo] +} + +func FillCellByBuying(data planet_data, dims []int, table []State, addr []int) { + if addr[Hold] == 0 { + // Can't buy and then have nothing + return + } + my_index := EncodeIndex(dims, addr) + other := make([]int, NumDimensions) + copy(other, addr) + planet := data.i2p[addr[Location]] + commodity := data.i2c[addr[Hold]] + if !data.Commodities[commodity].CanSell { + return + } + relative_price, available := data.Planets[planet].RelativePrices[commodity] + if !available { + return + } + base_price := data.Commodities[commodity].BasePrice + absolute_price := relative_price * base_price + quantity := *hold - addr[UnusedCargo] + total_price := quantity * absolute_price + other[Hold] = 0 + UpdateCell(table, my_index, EncodeIndex(dims, other), -total_price) +} + +func FillCellByMisc(data planet_data, dims []int, table []State, addr []int) { + /* Buy Eden warp units */ + /* Buy a Device of Cloaking */ + /* Silly: Dump a Device of Cloaking */ + /* Buy Fighter Drones */ + /* Buy Shield Batteries */ + /* Visit this planet */ +} + +func FillStateTable2Iteration(data planet_data, dims []int, table []State, +addr []int, f func(planet_data, []int, []State, []int)) { + /* TODO: Justify the safety of the combination of this dimension + * iteration and the various phases f. */ for addr[Hold] = 0; addr[Hold] < dims[Hold]; addr[Hold]++ { for addr[Cloaks] = 0; addr[Cloaks] < dims[Cloaks]; addr[Cloaks]++ { for addr[UnusedCargo] = 0; addr[UnusedCargo] < dims[UnusedCargo]; addr[UnusedCargo]++ { - if addr[Edens]+addr[Cloaks]+addr[UnusedCargo] <= - eden_capacity+1 { - for addr[NeedFighters] = 0; addr[NeedFighters] < dims[NeedFighters]; addr[NeedFighters]++ { - for addr[NeedShields] = 0; addr[NeedShields] < dims[NeedShields]; addr[NeedShields]++ { - for addr[Visit] = 0; addr[Visit] < dims[Visit]; addr[Visit]++ { - FillStateCell(data, dims, table, addr) - } + for addr[NeedFighters] = 0; addr[NeedFighters] < dims[NeedFighters]; addr[NeedFighters]++ { + for addr[NeedShields] = 0; addr[NeedShields] < dims[NeedShields]; addr[NeedShields]++ { + for addr[Visit] = 0; addr[Visit] < dims[Visit]; addr[Visit]++ { + f(data, dims, table, addr) } } } } } } +} + +func FillStateTable2(data planet_data, dims []int, table []State, +fuel_remaining, edens_remaining int, planet string, barrier chan<- bool) { + addr := make([]int, len(dims)) + addr[Edens] = edens_remaining + addr[Fuel] = fuel_remaining + addr[Location] = data.p2i[planet] + FillStateTable2Iteration(data, dims, table, addr, FillCellByArriving) + FillStateTable2Iteration(data, dims, table, addr, FillCellBySelling) + FillStateTable2Iteration(data, dims, table, addr, FillCellByBuying) + FillStateTable2Iteration(data, dims, table, addr, FillCellByMisc) barrier <- true } @@ -250,8 +415,7 @@ fuel_remaining, edens_remaining int, planet string, barrier chan<- bool) { * multiple layers for good utilization (on 2011 machines). Each thread * works on one planet's states and need not synchronize with peer threads. */ -func FillStateTable1(data planet_data, dims []int) []State { - table := make([]State, StateTableSize(dims)) +func FillStateTable1(data planet_data, dims []int, table []State) { barrier := make(chan bool, len(data.Planets)) eden_capacity := data.Commodities["Eden Warp Units"].Limit work_units := (float64(*fuel) + 1) * (float64(eden_capacity) + 1) @@ -269,66 +433,7 @@ func FillStateTable1(data planet_data, dims []int) []State { fmt.Printf("\r%3.0f%%", 100*work_done/work_units) } } - return table -} - -/* What is the value of hauling 'commodity' from 'from' to 'to'? - * Take into account the available funds and the available cargo space. */ -func TradeValue(data planet_data, -from, to Planet, -commodity string, -initial_funds, max_quantity int) int { - if !data.Commodities[commodity].CanSell { - return 0 - } - from_relative_price, from_available := from.RelativePrices[commodity] - if !from_available { - return 0 - } - to_relative_price, to_available := to.RelativePrices[commodity] - if !to_available { - return 0 - } - - base_price := data.Commodities[commodity].BasePrice - from_absolute_price := from_relative_price * base_price - to_absolute_price := to_relative_price * base_price - buy_price := from_absolute_price - sell_price := int(float64(to_absolute_price) * 0.9) - var can_afford int = initial_funds / buy_price - quantity := can_afford - if quantity > max_quantity { - quantity = max_quantity - } - return (sell_price - buy_price) * max_quantity -} - -func FindBestTrades(data planet_data) [][]string { - // TODO: We can't cache this because this can change based on available funds. - best := make([][]string, len(data.Planets)) - for from := range data.Planets { - best[data.p2i[from]] = make([]string, len(data.Planets)) - for to := range data.Planets { - best_gain := 0 - price_list := data.Planets[from].RelativePrices - if len(data.Planets[to].RelativePrices) < len(data.Planets[from].RelativePrices) { - price_list = data.Planets[to].RelativePrices - } - for commodity := range price_list { - gain := TradeValue(data, - data.Planets[from], - data.Planets[to], - commodity, - 10000000, - 1) - if gain > best_gain { - best[data.p2i[from]][data.p2i[to]] = commodity - gain = best_gain - } - } - } - } - return best + print("\n") } // (Example of a use case for generics in Go) @@ -361,17 +466,8 @@ func main() { data.p2i, data.i2p = IndexPlanets(&data.Planets, 0) data.c2i, data.i2c = IndexCommodities(&data.Commodities, 1) dims := DimensionSizes(data) - table := FillStateTable1(data, dims) - table[0] = State{1, 1} - best_trades := FindBestTrades(data) - - for from := range data.Planets { - for to := range data.Planets { - best_trade := "(nothing)" - if best_trades[data.p2i[from]][data.p2i[to]] != "" { - best_trade = best_trades[data.p2i[from]][data.p2i[to]] - } - fmt.Printf("%s to %s: %s\n", from, to, best_trade) - } - } + table := InitializeStateTable(data, dims) + FillStateTable1(data, dims, table) + print("Going to print state table...") + fmt.Printf("%v", table) }