X-Git-Url: http://git.scottworley.com/planeteer/blobdiff_plain/5a1593ab8a31d024658664769920cbd0d5438e34..7b5d9d135761c478762c98b5afb46500ad883de2:/planeteer.go diff --git a/planeteer.go b/planeteer.go index 87c7448..d5c359a 100644 --- a/planeteer.go +++ b/planeteer.go @@ -18,33 +18,80 @@ package main import "flag" +import "fmt" import "json" import "os" -import "fmt" +import "strings" + +var funds = flag.Int("funds", 0, + "Starting funds") + +var start = flag.String("start", "", + "The planet to start at") -var datafile = flag.String("planet_data_file", "planet-data", +var flight_plan_string = flag.String("flight_plan", "", + "Your hidey-holes for the day, comma-separated.") + +var end = flag.String("end", "", + "A comma-separated list of acceptable ending planets.") + +var planet_data_file = flag.String("planet_data_file", "planet-data", "The file to read planet data from") +var fuel = flag.Int("fuel", 16, "Reactor units") + +var hold = flag.Int("hold", 300, "Size of your cargo hold") + +var start_edens = flag.Int("start_edens", 0, + "How many Eden Warp Units are you starting with?") + +var end_edens = flag.Int("end_edens", 0, + "How many Eden Warp Units would you like to keep (not use)?") + +var cloak = flag.Bool("cloak", false, + "Make sure to end with a Device of Cloaking") + +var drones = flag.Int("drones", 0, "Buy this many Fighter Drones") + +var batteries = flag.Int("batteries", 0, "Buy this many Shield Batterys") + +var visit_string = flag.String("visit", "", + "A comma-separated list of planets to make sure to visit") + +func visit() []string { + if *visit_string == "" { + return []string{} + } + return strings.Split(*visit_string, ",") +} + +func flight_plan() []string { + if *flight_plan_string == "" { + return []string{} + } + return strings.Split(*flight_plan_string, ",") +} + type Commodity struct { - Name string BasePrice int CanSell bool Limit int } - +type Planet struct { + BeaconOn bool + /* Use relative prices rather than absolute prices because you + can get relative prices without traveling to each planet. */ + RelativePrices map[string]int +} type planet_data struct { - Commodities []Commodity - Planets []struct { - Name string - BeaconOn bool - /* Use relative prices rather than absolute prices because you - can get relative prices without traveling to each planet. */ - RelativePrices map [string] int - } + Commodities map[string]Commodity + Planets map[string]Planet + p2i, c2i map[string]int // Generated; not read from file + i2p, i2c []string // Generated; not read from file } func ReadData() (data planet_data) { - f, err := os.Open(*datafile) + f, err := os.Open(*planet_data_file) if err != nil { panic(err) } @@ -56,63 +103,467 @@ func ReadData() (data planet_data) { return } -func TradeValue(data planet_data, - from_index, to_index, commodity_index, quantity int) int { +/* This program operates by filling in a state table representing the best + * possible trips you could make; the ones that makes you the most money. + * This is feasible because we don't look at all the possible trips. + * We define a list of things that are germane to this game and then only + * consider the best outcome in each possible game state. + * + * Each cell in the table represents a state in the game. In each cell, + * we track two things: 1. the most money you could possibly have while in + * that state and 2. one possible way to get into that state with that + * amount of money. + * + * A basic analysis can be done with a two-dimensional table: location and + * fuel. planeteer-1.0 used this two-dimensional table. This version + * adds features mostly by adding dimensions to this table. + * + * Note that the sizes of each dimension are data driven. Many dimensions + * collapse to one possible value (ie, disappear) if the corresponding + * feature is not enabled. + * + * The order of the dimensions in the list of constants below determines + * their layout in RAM. The cargo-based 'dimensions' are not completely + * independent -- some combinations are illegal and not used. They are + * handled as three dimensions rather than one for simplicity. Placing + * these dimensions first causes the unused cells in the table to be + * grouped together in large blocks. This keeps them from polluting + * cache lines, and if they are large enough, prevent the memory manager + * from allocating pages for these areas at all. + * + * If the table gets too big to fit in RAM: + * * Combine the Edens, Cloaks, and UnusedCargo dimensions. Of the + * 24 combinations, only 15 are legal: a 38% savings. + * * Reduce the size of the Fuel dimension to 3. We only ever look + * backwards 2 units, so just rotate the logical values through + * the same 3 physical addresses. This is good for an 82% savings. + * * Reduce the size of the Edens dimension from 3 to 2, for the + * same reasons as Fuel above. 33% savings. + * * Buy more ram. (Just sayin'. It's cheaper than you think.) + * + */ + +// The official list of dimensions: +const ( + // Name Num Size Description + Edens = iota // 1 3 # of Eden warp units (0 - 2 typically) + Cloaks // 2 2 # of Devices of Cloaking (0 or 1) + UnusedCargo // 3 4 # of unused cargo spaces (0 - 3 typically) + Fuel // 4 17 Reactor power left (0 - 16) + Location // 5 26 Location (which planet) + Hold // 6 15 Cargo bay contents (a *Commodity or nil) + NeedFighters // 7 2 Errand: Buy fighter drones (needed or not) + NeedShields // 8 2 Errand: Buy shield batteries (needed or not) + Visit // 9 2**N Visit: Stop by these N planets in the route + + NumDimensions +) - commodity := &data.Commodities[commodity_index] - if !commodity.CanSell { - return 0 +func bint(b bool) int { + if b { + return 1 } + return 0 +} + +func DimensionSizes(data planet_data) []int { + eden_capacity := data.Commodities["Eden Warp Units"].Limit + if *start_edens > eden_capacity { + eden_capacity = *start_edens + } + cloak_capacity := bint(*cloak) + dims := make([]int, NumDimensions) + dims[Edens] = eden_capacity + 1 + dims[Cloaks] = cloak_capacity + 1 + dims[UnusedCargo] = eden_capacity + cloak_capacity + 1 + dims[Fuel] = *fuel + 1 + dims[Location] = len(data.Planets) + dims[Hold] = len(data.Commodities) + 1 + dims[NeedFighters] = bint(*drones > 0) + 1 + dims[NeedShields] = bint(*batteries > 0) + 1 + dims[Visit] = 1 << uint(len(visit())) + + // Remind myself to add a line above when adding new dimensions + for i, dim := range dims { + if dim < 1 { + panic(i) + } + } + return dims +} - from_planet := &data.Planets[from_index] - from_relative_price, from_available := from_planet.RelativePrices[commodity.Name] - if !from_available { - return 0 +func StateTableSize(dims []int) int { + product := 1 + for _, size := range dims { + product *= size } + return product +} + +type State struct { + value, from int +} + +func EncodeIndex(dims, addr []int) int { + index := addr[0] + if addr[0] > dims[0] { + panic(0) + } + for i := 1; i < NumDimensions; i++ { + if addr[i] > dims[i] { + panic(i) + } + index = index*dims[i] + addr[i] + } + return index +} - to_planet := &data.Planets[to_index] - to_relative_price, to_available := to_planet.RelativePrices[commodity.Name] - if !to_available { - return 0 +func DecodeIndex(dims []int, index int) []int { + addr := make([]int, NumDimensions) + for i := NumDimensions - 1; i > 0; i-- { + addr[i] = index % dims[i] + index /= dims[i] } + addr[0] = index + return addr +} + +func InitializeStateTable(data planet_data, dims []int) []State { + table := make([]State, StateTableSize(dims)) + + addr := make([]int, NumDimensions) + addr[Fuel] = *fuel + addr[Edens] = *start_edens + addr[Location] = data.p2i[*start] + table[EncodeIndex(dims, addr)].value = *funds + + return table +} - from_absolute_price := from_relative_price * commodity.BasePrice - to_absolute_price := to_relative_price * commodity.BasePrice - buy_price := from_absolute_price - sell_price := int(float64(to_absolute_price) * 0.9) - return (sell_price - buy_price) * quantity +/* These four fill procedures fill in the cell at address addr by + * looking at all the possible ways to reach this cell and selecting + * the best one. + * + * The other obvious implementation choice is to do this the other way + * around -- for each cell, conditionally overwrite all the other cells + * that are reachable *from* the considered cell. We choose gathering + * reads over scattering writes to avoid having to take a bunch of locks. + */ +func UpdateCell(table []State, here, there, value_difference int) { + possible_value := table[there].value + value_difference + if table[there].value > 0 && possible_value > table[here].value { + table[here].value = possible_value + table[here].from = there + } } -func FindBestTrades(data planet_data) [][]*Commodity { - best := make([][]*Commodity, len(data.Planets)) - for from_index := range data.Planets { - best[from_index] = make([]*Commodity, len(data.Planets)) - for to_index := range data.Planets { - best_gain := 0 - for commodity_index := range data.Commodities { - gain := TradeValue(data, from_index, to_index, commodity_index, 1) - if gain > best_gain { - best[from_index][to_index] = &data.Commodities[commodity_index] - gain = best_gain +func FillCellByArriving(data planet_data, dims []int, table []State, addr []int) { + my_index := EncodeIndex(dims, addr) + other := make([]int, NumDimensions) + copy(other, addr) + + /* Travel here via a 2-fuel unit jump */ + if addr[Fuel]+2 < dims[Fuel] { + other[Fuel] = addr[Fuel] + 2 + for other[Location] = 0; other[Location] < dims[Location]; other[Location]++ { + UpdateCell(table, my_index, EncodeIndex(dims, other), 0) + } + other[Location] = addr[Location] + other[Fuel] = addr[Fuel] + } + + /* Travel here via a hidey hole */ + if addr[Fuel]+1 < dims[Fuel] { + hole_index := (dims[Fuel] - 1) - (addr[Fuel] + 1) + if hole_index < len(flight_plan()) && addr[Location] == data.p2i[flight_plan()[hole_index]] { + other[Fuel] = addr[Fuel] + 1 + for other[Location] = 0; other[Location] < dims[Location]; other[Location]++ { + UpdateCell(table, my_index, EncodeIndex(dims, other), 0) + } + other[Location] = addr[Location] + other[Fuel] = addr[Fuel] + } + } + + /* Travel here via Eden Warp Unit */ + for other[Edens] = addr[Edens] + 1; other[Edens] < dims[Edens]; other[Edens]++ { + for other[Location] = 0; other[Location] < dims[Location]; other[Location]++ { + UpdateCell(table, my_index, EncodeIndex(dims, other), 0) + } + } + other[Location] = addr[Location] + other[Edens] = addr[Edens] +} + +func FillCellBySelling(data planet_data, dims []int, table []State, addr []int) { + if addr[Hold] > 0 { + // Can't sell and still have cargo + return + } + if addr[UnusedCargo] > 0 { + // Can't sell everything and still have 'unused' holds + return + } + my_index := EncodeIndex(dims, addr) + other := make([]int, NumDimensions) + copy(other, addr) + planet := data.i2p[addr[Location]] + for other[Hold] = 0; other[Hold] < dims[Hold]; other[Hold]++ { + commodity := data.i2c[other[Hold]] + if !data.Commodities[commodity].CanSell { + // TODO: Dump cargo + continue + } + relative_price, available := data.Planets[planet].RelativePrices[commodity] + if !available { + continue + } + base_price := data.Commodities[commodity].BasePrice + absolute_price := float64(base_price) * float64(relative_price) / 100.0 + sell_price := int(absolute_price * 0.9) + + for other[UnusedCargo] = 0; other[UnusedCargo] < dims[UnusedCargo]; other[UnusedCargo]++ { + + quantity := *hold - (other[UnusedCargo] + other[Cloaks] + other[Edens]) + sale_value := quantity * sell_price + UpdateCell(table, my_index, EncodeIndex(dims, other), sale_value) + } + } + other[UnusedCargo] = addr[UnusedCargo] +} + +func FillCellByBuying(data planet_data, dims []int, table []State, addr []int) { + if addr[Hold] == 0 { + // Can't buy and then have nothing + return + } + my_index := EncodeIndex(dims, addr) + other := make([]int, NumDimensions) + copy(other, addr) + planet := data.i2p[addr[Location]] + commodity := data.i2c[addr[Hold]] + if !data.Commodities[commodity].CanSell { + return + } + relative_price, available := data.Planets[planet].RelativePrices[commodity] + if !available { + return + } + base_price := data.Commodities[commodity].BasePrice + absolute_price := int(float64(base_price) * float64(relative_price) / 100.0) + quantity := *hold - (addr[UnusedCargo] + addr[Cloaks] + addr[Edens]) + total_price := quantity * absolute_price + other[Hold] = 0 + other[UnusedCargo] = 0 + UpdateCell(table, my_index, EncodeIndex(dims, other), -total_price) + other[UnusedCargo] = addr[UnusedCargo] + other[Hold] = addr[Hold] +} + +func FillCellByMisc(data planet_data, dims []int, table []State, addr []int) { + my_index := EncodeIndex(dims, addr) + other := make([]int, NumDimensions) + copy(other, addr) + /* Buy Eden warp units */ + /* Buy a Device of Cloaking */ + if addr[Cloaks] == 1 && addr[UnusedCargo] < dims[UnusedCargo]-1 { + relative_price, available := data.Planets[data.i2p[addr[Location]]].RelativePrices["Device Of Cloakings"] + if available { + absolute_price := int(float64(data.Commodities["Device Of Cloakings"].BasePrice) * float64(relative_price) / 100.0) + other[Cloaks] = 0 + if other[Hold] != 0 { + other[UnusedCargo] = addr[UnusedCargo] + 1 + } + UpdateCell(table, my_index, EncodeIndex(dims, other), -absolute_price) + other[UnusedCargo] = addr[UnusedCargo] + other[Cloaks] = addr[Cloaks] + } + } + /* Silly: Dump a Device of Cloaking */ + /* Buy Fighter Drones */ + /* Buy Shield Batteries */ + /* Visit this planet */ +} + +func FillStateTable2Iteration(data planet_data, dims []int, table []State, +addr []int, f func(planet_data, []int, []State, []int)) { + /* TODO: Justify the safety of the combination of this dimension + * iteration and the various phases f. */ + for addr[Hold] = 0; addr[Hold] < dims[Hold]; addr[Hold]++ { + for addr[Cloaks] = 0; addr[Cloaks] < dims[Cloaks]; addr[Cloaks]++ { + for addr[UnusedCargo] = 0; addr[UnusedCargo] < dims[UnusedCargo]; addr[UnusedCargo]++ { + for addr[NeedFighters] = 0; addr[NeedFighters] < dims[NeedFighters]; addr[NeedFighters]++ { + for addr[NeedShields] = 0; addr[NeedShields] < dims[NeedShields]; addr[NeedShields]++ { + for addr[Visit] = 0; addr[Visit] < dims[Visit]; addr[Visit]++ { + f(data, dims, table, addr) + } + } } } } } - return best +} + +func FillStateTable2(data planet_data, dims []int, table []State, +fuel_remaining, edens_remaining int, planet string, barrier chan<- bool) { + addr := make([]int, len(dims)) + addr[Edens] = edens_remaining + addr[Fuel] = fuel_remaining + addr[Location] = data.p2i[planet] + FillStateTable2Iteration(data, dims, table, addr, FillCellByArriving) + FillStateTable2Iteration(data, dims, table, addr, FillCellBySelling) + FillStateTable2Iteration(data, dims, table, addr, FillCellByBuying) + FillStateTable2Iteration(data, dims, table, addr, FillCellByMisc) + barrier <- true +} + +/* Filling the state table is a set of nested for loops NumDimensions deep. + * We split this into two procedures: 1 and 2. #1 is the outer, slowest- + * changing indexes. #1 fires off many calls to #2 that run in parallel. + * The order of the nesting of the dimensions, the order of iteration within + * each dimension, and where the 1 / 2 split is placed are carefully chosen + * to make this arrangement safe. + * + * Outermost two layers: Go from high-energy states (lots of fuel, edens) to + * low-energy state. These must be processed sequentially and in this order + * because you travel through high-energy states to get to the low-energy + * states. + * + * Third layer: Planet. This is a good layer to parallelize on. There's + * high enough cardinality that we don't have to mess with parallelizing + * multiple layers for good utilization (on 2011 machines). Each thread + * works on one planet's states and need not synchronize with peer threads. + */ +func FillStateTable1(data planet_data, dims []int, table []State) { + barrier := make(chan bool, len(data.Planets)) + eden_capacity := data.Commodities["Eden Warp Units"].Limit + work_units := (float64(*fuel) + 1) * (float64(eden_capacity) + 1) + work_done := 0.0 + for fuel_remaining := *fuel; fuel_remaining >= 0; fuel_remaining-- { + for edens_remaining := eden_capacity; edens_remaining >= 0; edens_remaining-- { + for planet := range data.Planets { + go FillStateTable2(data, dims, table, fuel_remaining, + edens_remaining, planet, barrier) + } + for _ = range data.Planets { + <-barrier + } + work_done++ + print(fmt.Sprintf("\r%3.0f%%", 100*work_done/work_units)) + } + } + print("\n") +} + +func FindBestState(data planet_data, dims []int, table []State) int { + addr := make([]int, NumDimensions) + addr[Edens] = *end_edens + addr[Cloaks] = dims[Cloaks] - 1 + addr[NeedFighters] = dims[NeedFighters] - 1 + addr[NeedShields] = dims[NeedShields] - 1 + addr[Visit] = dims[Visit] - 1 + // Fuel, Hold, UnusedCargo left at 0 + max_index := -1 + max_value := 0 + for addr[Location] = 0; addr[Location] < dims[Location]; addr[Location]++ { + index := EncodeIndex(dims, addr) + if table[index].value > max_value { + max_value = table[index].value + max_index = index + } + } + return max_index +} + +func Commas(n int) (s string) { + r := n % 1000 + n /= 1000 + for n > 0 { + s = fmt.Sprintf(",%03d", r) + s + r = n % 1000 + n /= 1000 + } + s = fmt.Sprint(r) + s + return +} + +func DescribePath(data planet_data, dims []int, table []State, start int) (description []string) { + for index := start; index > 0 && table[index].from > 0; index = table[index].from { + line := fmt.Sprintf("%13v", Commas(table[index].value)) + addr := DecodeIndex(dims, index) + prev := DecodeIndex(dims, table[index].from) + if addr[Location] != prev[Location] { + from := data.i2p[prev[Location]] + to := data.i2p[addr[Location]] + if addr[Fuel] != prev[Fuel] { + line += fmt.Sprintf(" Jump from %v to %v (%v reactor units)", from, to, prev[Fuel]-addr[Fuel]) + } else if addr[Edens] != prev[Edens] { + line += fmt.Sprintf(" Eden warp from %v to %v", from, to) + } else { + panic("Traveling without fuel?") + } + } + if addr[Hold] != prev[Hold] { + if addr[Hold] == 0 { + quantity := *hold - (prev[UnusedCargo] + prev[Edens] + prev[Cloaks]) + line += fmt.Sprintf(" Sell %v %v", quantity, data.i2c[prev[Hold]]) + } else if prev[Hold] == 0 { + quantity := *hold - (addr[UnusedCargo] + addr[Edens] + addr[Cloaks]) + line += fmt.Sprintf(" Buy %v %v", quantity, data.i2c[addr[Hold]]) + } else { + panic("Switched cargo?") + } + + } + if addr[Cloaks] == 1 && prev[Cloaks] == 0 { + // TODO: Dump cloaks, convert from cargo? + line += " Buy a Cloak" + } + description = append(description, line) + } + return +} + +// (Example of a use case for generics in Go) +func IndexPlanets(m *map[string]Planet, start_at int) (map[string]int, []string) { + e2i := make(map[string]int, len(*m)+start_at) + i2e := make([]string, len(*m)+start_at) + i := start_at + for e := range *m { + e2i[e] = i + i2e[i] = e + i++ + } + return e2i, i2e +} +func IndexCommodities(m *map[string]Commodity, start_at int) (map[string]int, []string) { + e2i := make(map[string]int, len(*m)+start_at) + i2e := make([]string, len(*m)+start_at) + i := start_at + for e := range *m { + e2i[e] = i + i2e[i] = e + i++ + } + return e2i, i2e } func main() { flag.Parse() data := ReadData() - best_trades := FindBestTrades(data) - for from_index, from_planet := range data.Planets { - for to_index, to_planet := range data.Planets { - best_trade := "(nothing)" - if best_trades[from_index][to_index] != nil { - best_trade = best_trades[from_index][to_index].Name - } - fmt.Printf("%s to %s: %s\n", from_planet.Name, to_planet.Name, best_trade) + data.p2i, data.i2p = IndexPlanets(&data.Planets, 0) + data.c2i, data.i2c = IndexCommodities(&data.Commodities, 1) + dims := DimensionSizes(data) + table := InitializeStateTable(data, dims) + FillStateTable1(data, dims, table) + best := FindBestState(data, dims, table) + if best == -1 { + print("Cannot acheive success criteria\n") + } else { + description := DescribePath(data, dims, table, best) + for i := len(description) - 1; i >= 0; i-- { + fmt.Println(description[i]) } } }