X-Git-Url: http://git.scottworley.com/planeteer/blobdiff_plain/544108c4d2c99c98bdf7566a23e5996127c8fe8e..HEAD:/planeteer.go diff --git a/planeteer.go b/planeteer.go index c6a309c..cf00d56 100644 --- a/planeteer.go +++ b/planeteer.go @@ -3,8 +3,7 @@ * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU Affero General Public License as - * published by the Free Software Foundation, either version 3 of the - * License, or (at your option) any later version. + * published by the Free Software Foundation, version 3. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of @@ -19,26 +18,32 @@ package main import "flag" import "fmt" -import "json" +import "encoding/json" import "os" +import "runtime/pprof" import "strings" +var funds = flag.Int("funds", 0, + "Starting funds") + var start = flag.String("start", "", "The planet to start at") -var flight_plan = flag.String("flight_plan", "", - "Your hidey-holes for the day, comma-separated.") +var flight_plan_string = flag.String("flight_plan", "", + "Your hyper-holes for the day, comma-separated.") -var end = flag.String("end", "", +var end_string = flag.String("end", "", "A comma-separated list of acceptable ending planets.") var planet_data_file = flag.String("planet_data_file", "planet-data", "The file to read planet data from") -var fuel = flag.Int("fuel", 16, "Reactor units") +var fuel = flag.Int("fuel", 16, "Hyper Jump power left") var hold = flag.Int("hold", 300, "Size of your cargo hold") +var start_hold = flag.String("start_hold", "", "Start with a hold full of cargo") + var start_edens = flag.Int("start_edens", 0, "How many Eden Warp Units are you starting with?") @@ -52,11 +57,59 @@ var drones = flag.Int("drones", 0, "Buy this many Fighter Drones") var batteries = flag.Int("batteries", 0, "Buy this many Shield Batterys") +var drone_price = flag.Int("drone_price", 0, "Today's Fighter Drone price") + +var battery_price = flag.Int("battery_price", 0, "Today's Shield Battery price") + var visit_string = flag.String("visit", "", "A comma-separated list of planets to make sure to visit") +var tomorrow_weight = flag.Float64("tomorrow_weight", 1.0, + "Weight for the expected value of tomorrow's trading. 0.0 - 1.0") + +var extra_stats = flag.Bool("extra_stats", true, + "Show additional information of possible interest") + +var cpuprofile = flag.String("cpuprofile", "", "write cpu profile to file") + +var visit_cache []string + func visit() []string { - return strings.Split(*visit_string, ",") + if visit_cache == nil { + if *visit_string == "" { + return nil + } + visit_cache = strings.Split(*visit_string, ",") + } + return visit_cache +} + +var flight_plan_cache []string + +func flight_plan() []string { + if flight_plan_cache == nil { + if *flight_plan_string == "" { + return nil + } + flight_plan_cache = strings.Split(*flight_plan_string, ",") + } + return flight_plan_cache +} + +var end_cache map[string]bool + +func end() map[string]bool { + if end_cache == nil { + if *end_string == "" { + return nil + } + m := make(map[string]bool) + for _, p := range strings.Split(*end_string, ",") { + m[p] = true + } + end_cache = m + } + return end_cache } type Commodity struct { @@ -65,7 +118,9 @@ type Commodity struct { Limit int } type Planet struct { - BeaconOn bool + BeaconOn bool + Private bool + TomorrowValue int /* Use relative prices rather than absolute prices because you can get relative prices without traveling to each planet. */ RelativePrices map[string]int @@ -77,17 +132,26 @@ type planet_data struct { i2p, i2c []string // Generated; not read from file } -func ReadData() (data planet_data) { - f, err := os.Open(*planet_data_file) +func json_slurp(filename string, receptacle interface{}) error { + f, err := os.Open(filename) if err != nil { - panic(err) + return err } defer f.Close() - err = json.NewDecoder(f).Decode(&data) + err = json.NewDecoder(f).Decode(receptacle) + if err != nil { + return err + } + return nil +} + +func ReadData() planet_data { + var data planet_data + err := json_slurp(*planet_data_file, &data) if err != nil { panic(err) } - return + return data } /* This program operates by filling in a state table representing the best @@ -114,23 +178,37 @@ func ReadData() (data planet_data) { * independent -- some combinations are illegal and not used. They are * handled as three dimensions rather than one for simplicity. Placing * these dimensions first causes the unused cells in the table to be - * grouped together in large blocks. This keeps them from polluting - * cache lines, and if they are large enough, prevent the memory manager - * from allocating pages for these areas at all. + * grouped together in large blocks. This keeps the unused cells from + * polluting cache lines, and if the spans of unused cells are large + * enough, allows the memory manager to swap out entire pages. + * + * If the table gets too big to fit in RAM: + * * Combine the Edens, Cloaks, and UnusedCargo dimensions. Of the + * 24 combinations, only 15 are legal: a 38% savings. + * * Reduce the size of the Fuel dimension to 3. Explicit iteration + * only ever needs to look backwards 2 units, so the logical values + * can rotate through the same 3 physical addresses. This would be + * good for an 82% savings. Note that explicit iteration went away + * in 0372f045. + * * Reduce the size of the Edens dimension from 3 to 2, for the + * same reasons as Fuel above. 33% savings. + * * Buy more ram. (Just sayin'. It's cheaper than you think.) + * */ // The official list of dimensions: const ( - // Name Num Size Description - Edens = iota // 1 3 # of Eden warp units (0 - 2 typically) - Cloaks // 2 2 # of Devices of Cloaking (0 or 1) - UnusedCargo // 3 4 # of unused cargo spaces (0 - 3 typically) - Fuel // 4 17 Reactor power left (0 - 16) - Location // 5 26 Location (which planet) - Hold // 6 15 Cargo bay contents (a *Commodity or nil) - NeedFighters // 7 2 Errand: Buy fighter drones (needed or not) - NeedShields // 8 2 Errand: Buy shield batteries (needed or not) - Visit // 9 2**N Visit: Stop by these N planets in the route + // Name Num Size Description + Edens = iota // 1 3 # of Eden warp units (0 - 2 typically) + Cloaks // 2 1-2 # of Devices of Cloaking (0 or 1) + UnusedCargo // 3 4 # of unused cargo spaces (0 - 3 typically) + Fuel // 4 17 Hyper jump power left (0 - 16) + Location // 5 26 Location (which planet) + Hold // 6 15 Cargo bay contents (a *Commodity or nil) + Traded // 7 2 Traded yet? + BuyFighters // 8 1-2 Errand: Buy fighter drones + BuyShields // 9 1-2 Errand: Buy shield batteries + Visit // 10 1-2**N Visit: Stop by these N planets in the route NumDimensions ) @@ -142,18 +220,22 @@ func bint(b bool) int { return 0 } -func DimensionSizes(data planet_data) []int { +func DimensionSizes(data planet_data) LogicalIndex { eden_capacity := data.Commodities["Eden Warp Units"].Limit + if *start_edens > eden_capacity { + eden_capacity = *start_edens + } cloak_capacity := bint(*cloak) - dims := make([]int, NumDimensions) + dims := make(LogicalIndex, NumDimensions) dims[Edens] = eden_capacity + 1 dims[Cloaks] = cloak_capacity + 1 dims[UnusedCargo] = eden_capacity + cloak_capacity + 1 dims[Fuel] = *fuel + 1 dims[Location] = len(data.Planets) - dims[Hold] = len(data.Commodities) - dims[NeedFighters] = bint(*drones > 0) + 1 - dims[NeedShields] = bint(*batteries > 0) + 1 + dims[Hold] = len(data.Commodities) + 1 + dims[Traded] = 2 + dims[BuyFighters] = bint(*drones > 0) + 1 + dims[BuyShields] = bint(*batteries > 0) + 1 dims[Visit] = 1 << uint(len(visit())) // Remind myself to add a line above when adding new dimensions @@ -165,201 +247,507 @@ func DimensionSizes(data planet_data) []int { return dims } -func StateTableSize(dims []int) int { - sum := 0 +type Value int32 +type PhysicalIndex int32 +type LogicalIndex []int + +func StateTableSize(dims LogicalIndex) int { + product := 1 for _, size := range dims { - sum += size + product *= size } - return sum + return product } type State struct { - value, from int + value Value + from PhysicalIndex } -func EncodeIndex(dims, addr []int) int { +const ( + FROM_ROOT = -2147483647 + iota + FROM_UNINITIALIZED + VALUE_UNINITIALIZED + VALUE_BEING_EVALUATED + VALUE_RUBISH +) + +func EncodeIndex(dims, addr LogicalIndex) PhysicalIndex { index := addr[0] - for i := 1; i < len(dims); i++ { + if addr[0] > dims[0] { + panic(0) + } + for i := 1; i < NumDimensions; i++ { + if addr[i] < 0 || addr[i] >= dims[i] { + panic(i) + } index = index*dims[i] + addr[i] } - return index + return PhysicalIndex(index) } -func DecodeIndex(dims []int, index int) []int { - addr := make([]int, len(dims)) - for i := len(dims) - 1; i > 0; i-- { - addr[i] = index % dims[i] - index /= dims[i] +func DecodeIndex(dims LogicalIndex, index PhysicalIndex) LogicalIndex { + scratch := int(index) + addr := make(LogicalIndex, NumDimensions) + for i := NumDimensions - 1; i > 0; i-- { + addr[i] = scratch % dims[i] + scratch /= dims[i] } - addr[0] = index + addr[0] = scratch return addr } -/* Fill in the cell at address addr by looking at all the possible ways - * to reach this cell and selecting the best one. - * - * The other obvious implementation choice is to do this the other way - * around -- for each cell, conditionally overwrite all the other cells - * that are reachable *from* the considered cell. We choose gathering - * reads over scattering writes to avoid having to take a bunch of locks. - * - * The order that we check things here matters only for value ties. We - * keep the first best path. So when action order doesn't matter, the - * check that is performed first here will appear in the output first. - */ -func FillStateTableCell(data planet_data, dims []int, table []State, addr []int) { - /* Travel here via jumping */ - /* Travel here via Eden Warp Unit */ - /* Silly: Dump Eden warp units */ - /* Buy Eden warp units */ +func PlanetIndex(data planet_data, name string) int { + index, ok := data.p2i[name] + if !ok { + panic("Unknown planet " + name) + } + return index +} + +func CommodityIndex(data planet_data, name string) int { + index, ok := data.c2i[name] + if !ok { + panic("Unknown commodity " + name) + } + return index +} + +func CreateStateTable(data planet_data, dims LogicalIndex) []State { + table := make([]State, StateTableSize(dims)) + for i := range table { + table[i].value = VALUE_UNINITIALIZED + table[i].from = FROM_UNINITIALIZED + } + + addr := make(LogicalIndex, NumDimensions) + addr[Fuel] = *fuel + addr[Edens] = *start_edens + addr[Location] = PlanetIndex(data, *start) + if *start_hold != "" { + addr[Hold] = CommodityIndex(data, *start_hold) + } + start_index := EncodeIndex(dims, addr) + table[start_index].value = Value(*funds) + table[start_index].from = FROM_ROOT + + return table +} + +/* CellValue fills in the one cell at address addr by looking at all + * the possible ways to reach this cell and selecting the best one. */ + +func Consider(data planet_data, dims LogicalIndex, table []State, there LogicalIndex, value_difference int, best_value *Value, best_source LogicalIndex) { + there_value := CellValue(data, dims, table, there) + if value_difference < 0 && Value(-value_difference) > there_value { + /* Can't afford this transition */ + return + } + possible_value := there_value + Value(value_difference) + if possible_value > *best_value { + *best_value = possible_value + copy(best_source, there) + } +} + +var cell_filled_count int + +func CellValue(data planet_data, dims LogicalIndex, table []State, addr LogicalIndex) Value { + my_index := EncodeIndex(dims, addr) + if table[my_index].value == VALUE_BEING_EVALUATED { + panic("Circular dependency") + } + if table[my_index].value != VALUE_UNINITIALIZED { + return table[my_index].value + } + table[my_index].value = VALUE_BEING_EVALUATED + + best_value := Value(VALUE_RUBISH) + best_source := make(LogicalIndex, NumDimensions) + other := make(LogicalIndex, NumDimensions) + copy(other, addr) + planet := data.i2p[addr[Location]] + + /* Travel here */ + if addr[Traded] == 0 { /* Can't have traded immediately after traveling. */ + other[Traded] = 1 /* Travel from states that have done trading. */ + + /* Travel here via a 2-fuel unit jump */ + if data.Planets[data.i2p[addr[Location]]].BeaconOn && addr[Fuel]+2 < dims[Fuel] { + other[Fuel] = addr[Fuel] + 2 + hole_index := (dims[Fuel] - 1) - (addr[Fuel] + 2) + if hole_index >= len(flight_plan()) || addr[Location] != PlanetIndex(data, flight_plan()[hole_index]) { + for other[Location] = 0; other[Location] < dims[Location]; other[Location]++ { + Consider(data, dims, table, other, 0, &best_value, best_source) + } + } + other[Location] = addr[Location] + other[Fuel] = addr[Fuel] + } + + /* Travel here via a 1-fuel unit jump (a hyper hole) */ + if addr[Fuel]+1 < dims[Fuel] { + hole_index := (dims[Fuel] - 1) - (addr[Fuel] + 1) + if hole_index < len(flight_plan()) && addr[Location] == PlanetIndex(data, flight_plan()[hole_index]) { + other[Fuel] = addr[Fuel] + 1 + for other[Location] = 0; other[Location] < dims[Location]; other[Location]++ { + Consider(data, dims, table, other, 0, &best_value, best_source) + } + other[Location] = addr[Location] + other[Fuel] = addr[Fuel] + } + } + + /* Travel here via Eden Warp Unit */ + if addr[Edens]+1 < dims[Edens] && (addr[Hold] == 0 || addr[UnusedCargo] > 0) { + _, available := data.Planets[data.i2p[addr[Location]]].RelativePrices["Eden Warp Units"] + if !available { + other[Edens] = addr[Edens] + 1 + if other[Hold] != 0 { + other[UnusedCargo] = addr[UnusedCargo] - 1 + } + for other[Location] = 0; other[Location] < dims[Location]; other[Location]++ { + Consider(data, dims, table, other, 0, &best_value, best_source) + } + other[Location] = addr[Location] + other[UnusedCargo] = addr[UnusedCargo] + other[Edens] = addr[Edens] + } + } + other[Traded] = addr[Traded] + } + + /* Trade */ + if addr[Traded] == 1 { + other[Traded] = 0 + + /* Consider not trading */ + Consider(data, dims, table, other, 0, &best_value, best_source) + + if !data.Planets[data.i2p[addr[Location]]].Private { + + /* Sell */ + if addr[Hold] == 0 && addr[UnusedCargo] == 0 { + for other[Hold] = 0; other[Hold] < dims[Hold]; other[Hold]++ { + commodity := data.i2c[other[Hold]] + if !data.Commodities[commodity].CanSell { + continue + } + relative_price, available := data.Planets[planet].RelativePrices[commodity] + if !available { + // TODO: Dump cargo + continue + } + base_price := data.Commodities[commodity].BasePrice + absolute_price := float64(base_price) * float64(relative_price) / 100.0 + sell_price := int(absolute_price * 0.9) + + for other[UnusedCargo] = 0; other[UnusedCargo] < dims[UnusedCargo]; other[UnusedCargo]++ { + quantity := *hold - (other[UnusedCargo] + other[Cloaks] + other[Edens]) + sale_value := quantity * sell_price + Consider(data, dims, table, other, sale_value, &best_value, best_source) + } + } + other[UnusedCargo] = addr[UnusedCargo] + other[Hold] = addr[Hold] + } + + /* Buy */ + other[Traded] = addr[Traded] /* Buy after selling */ + if addr[Hold] != 0 { + commodity := data.i2c[addr[Hold]] + if data.Commodities[commodity].CanSell { + relative_price, available := data.Planets[planet].RelativePrices[commodity] + if available { + base_price := data.Commodities[commodity].BasePrice + absolute_price := int(float64(base_price) * float64(relative_price) / 100.0) + quantity := *hold - (addr[UnusedCargo] + addr[Cloaks] + addr[Edens]) + total_price := quantity * absolute_price + other[Hold] = 0 + other[UnusedCargo] = 0 + Consider(data, dims, table, other, -total_price, &best_value, best_source) + other[UnusedCargo] = addr[UnusedCargo] + other[Hold] = addr[Hold] + } + } + } + } + other[Traded] = addr[Traded] + } + /* Buy a Device of Cloaking */ - /* Silly: Dump a Device of Cloaking */ + if addr[Cloaks] == 1 && addr[UnusedCargo] < dims[UnusedCargo]-1 { + relative_price, available := data.Planets[data.i2p[addr[Location]]].RelativePrices["Device Of Cloakings"] + if available { + absolute_price := int(float64(data.Commodities["Device Of Cloakings"].BasePrice) * float64(relative_price) / 100.0) + other[Cloaks] = 0 + if other[Hold] != 0 { + other[UnusedCargo] = addr[UnusedCargo] + 1 + } + Consider(data, dims, table, other, -absolute_price, &best_value, best_source) + other[UnusedCargo] = addr[UnusedCargo] + other[Cloaks] = addr[Cloaks] + } + } + /* Buy Fighter Drones */ + if addr[BuyFighters] == 1 { + relative_price, available := data.Planets[data.i2p[addr[Location]]].RelativePrices["Fighter Drones"] + if available { + absolute_price := int(float64(data.Commodities["Fighter Drones"].BasePrice) * float64(relative_price) / 100.0) + other[BuyFighters] = 0 + Consider(data, dims, table, other, -absolute_price**drones, &best_value, best_source) + other[BuyFighters] = addr[BuyFighters] + } + } + /* Buy Shield Batteries */ - if addr[Hold] == 0 { - /* Sell or dump things */ - for commodity := range data.Commodities { + if addr[BuyShields] == 1 { + relative_price, available := data.Planets[data.i2p[addr[Location]]].RelativePrices["Shield Batterys"] + if available { + absolute_price := int(float64(data.Commodities["Shield Batterys"].BasePrice) * float64(relative_price) / 100.0) + other[BuyShields] = 0 + Consider(data, dims, table, other, -absolute_price**batteries, &best_value, best_source) + other[BuyShields] = addr[BuyShields] } - } else { - /* Buy this thing */ } + /* Visit this planet */ -} + for i := uint(0); i < uint(len(visit())); i++ { + if addr[Visit]&(1< 0 && addr[Edens] <= eden_limit { + relative_price, available := data.Planets[data.i2p[addr[Location]]].RelativePrices["Eden Warp Units"] + if available { + absolute_price := int(float64(data.Commodities["Eden Warp Units"].BasePrice) * float64(relative_price) / 100.0) + for quantity := addr[Edens]; quantity > 0; quantity-- { + other[Edens] = addr[Edens] - quantity + if addr[Hold] != 0 { + other[UnusedCargo] = addr[UnusedCargo] + quantity + } + if other[UnusedCargo] < dims[UnusedCargo] { + Consider(data, dims, table, other, -absolute_price*quantity, &best_value, best_source) } } + other[Edens] = addr[Edens] + other[UnusedCargo] = addr[UnusedCargo] + } + } + + // Check that we didn't lose track of any temporary modifications to other. + for i := 0; i < NumDimensions; i++ { + if addr[i] != other[i] { + panic(i) } } - barrier <- true + + // Sanity check: This cell was in state BEING_EVALUATED + // the whole time that it was being evaluated. + if table[my_index].value != VALUE_BEING_EVALUATED { + panic(my_index) + } + + // Record our findings + table[my_index].value = best_value + table[my_index].from = EncodeIndex(dims, best_source) + + // UI: Progress bar + cell_filled_count++ + if cell_filled_count&0xfff == 0 { + print(fmt.Sprintf("\r%3.1f%%", 100*float64(cell_filled_count)/float64(StateTableSize(dims)))) + } + + return table[my_index].value } -/* Filling the state table is a set of nested for loops NumDimensions deep. - * We split this into two procedures: 1 and 2. #1 is the outer, slowest- - * changing indexes. #1 fires off many calls to #2 that run in parallel. - * The order of the nesting of the dimensions, the order of iteration within - * each dimension, and where the 1 / 2 split is placed are carefully chosen - * to make this arrangement safe. - * - * Outermost two layers: Go from high-energy states (lots of fuel, edens) to - * low-energy state. These must be processed sequentially and in this order - * because you travel through high-energy states to get to the low-energy - * states. - * - * Third layer: Planet. This is a good layer to parallelize on. There's - * high enough cardinality that we don't have to mess with parallelizing - * multiple layers for good utilization (on 2011 machines). Each thread - * works on one planet's states and need not synchronize with peer threads. - */ -func FillStateTable1(data planet_data, dims []int) []State { - table := make([]State, StateTableSize(dims)) - barrier := make(chan bool, len(data.Planets)) - eden_capacity := data.Commodities["Eden Warp Units"].Limit - work_units := (float64(*fuel) + 1) * (float64(eden_capacity) + 1) - work_done := 0.0 - for fuel_remaining := *fuel; fuel_remaining >= 0; fuel_remaining-- { - for edens_remaining := eden_capacity; edens_remaining >= 0; edens_remaining-- { - for planet := range data.Planets { - go FillStateTable2(data, dims, table, fuel_remaining, - edens_remaining, planet, barrier) - } - for _ = range data.Planets { - <-barrier +func FinalState(dims LogicalIndex) LogicalIndex { + addr := make(LogicalIndex, NumDimensions) + addr[Edens] = *end_edens + addr[Cloaks] = dims[Cloaks] - 1 + addr[BuyFighters] = dims[BuyFighters] - 1 + addr[BuyShields] = dims[BuyShields] - 1 + addr[Visit] = dims[Visit] - 1 + addr[Traded] = 1 + addr[Hold] = 0 + addr[UnusedCargo] = 0 + // Fuel and Location are determined by FindBestState + return addr +} + +func FindBestState(data planet_data, dims LogicalIndex, table []State, addr LogicalIndex) PhysicalIndex { + max_index := PhysicalIndex(-1) + max_value := 0.0 + max_fuel := 1 + if *fuel == 0 { + max_fuel = 0 + } + for addr[Fuel] = 0; addr[Fuel] <= max_fuel; addr[Fuel]++ { + for addr[Location] = 0; addr[Location] < dims[Location]; addr[Location]++ { + planet := data.i2p[addr[Location]] + if len(end()) == 0 || end()[planet] { + index := EncodeIndex(dims, addr) + today_value := CellValue(data, dims, table, addr) + tomorrow_value := *tomorrow_weight * float64(*hold+data.Planets[planet].TomorrowValue) + value := float64(today_value) + tomorrow_value + if value > max_value { + max_value = value + max_index = index + } } - work_done++ - fmt.Printf("\r%3.0f%%", 100*work_done/work_units) } } - return table + return max_index } -/* What is the value of hauling 'commodity' from 'from' to 'to'? - * Take into account the available funds and the available cargo space. */ -func TradeValue(data planet_data, -from, to Planet, -commodity string, -initial_funds, max_quantity int) int { - if !data.Commodities[commodity].CanSell { - return 0 - } - from_relative_price, from_available := from.RelativePrices[commodity] - if !from_available { - return 0 - } - to_relative_price, to_available := to.RelativePrices[commodity] - if !to_available { - return 0 - } - - base_price := data.Commodities[commodity].BasePrice - from_absolute_price := from_relative_price * base_price - to_absolute_price := to_relative_price * base_price - buy_price := from_absolute_price - sell_price := int(float64(to_absolute_price) * 0.9) - var can_afford int = initial_funds / buy_price - quantity := can_afford - if quantity > max_quantity { - quantity = max_quantity - } - return (sell_price - buy_price) * max_quantity +func Commas(n Value) string { + var s string + if n < 0 { + panic(n) + } + r := n % 1000 + n /= 1000 + for n > 0 { + s = fmt.Sprintf(",%03d", r) + s + r = n % 1000 + n /= 1000 + } + s = fmt.Sprint(r) + s + return s } -func FindBestTrades(data planet_data) [][]string { - // TODO: We can't cache this because this can change based on available funds. - best := make([][]string, len(data.Planets)) - for from := range data.Planets { - best[data.p2i[from]] = make([]string, len(data.Planets)) - for to := range data.Planets { - best_gain := 0 - price_list := data.Planets[from].RelativePrices - if len(data.Planets[to].RelativePrices) < len(data.Planets[from].RelativePrices) { - price_list = data.Planets[to].RelativePrices - } - for commodity := range price_list { - gain := TradeValue(data, - data.Planets[from], - data.Planets[to], - commodity, - 10000000, - 1) - if gain > best_gain { - best[data.p2i[from]][data.p2i[to]] = commodity - gain = best_gain - } +func FighterAndShieldCost(data planet_data, dims LogicalIndex, table []State, best PhysicalIndex) { + if *drones == 0 && *batteries == 0 { + return + } + fmt.Println() + if *drones > 0 { + final_state := FinalState(dims) + final_state[BuyFighters] = 0 + alt_best := FindBestState(data, dims, table, final_state) + cost := table[alt_best].value - table[best].value + fmt.Printf("\rDrones were %.2f each\n", float64(cost)/float64(*drones)) + } + if *batteries > 0 { + final_state := FinalState(dims) + final_state[BuyShields] = 0 + alt_best := FindBestState(data, dims, table, final_state) + cost := table[alt_best].value - table[best].value + fmt.Printf("\rBatteries were %.2f each\n", float64(cost)/float64(*batteries)) + } +} + +func EndEdensCost(data planet_data, dims LogicalIndex, table []State, best PhysicalIndex) { + if *end_edens == 0 { + return + } + fmt.Println() + final_state := FinalState(dims) + for extra_edens := 1; extra_edens <= *end_edens; extra_edens++ { + final_state[Edens] = *end_edens - extra_edens + alt_best := FindBestState(data, dims, table, final_state) + extra_funds := table[alt_best].value - table[best].value + fmt.Println("\rUse", extra_edens, "extra edens, make an extra", + Commas(extra_funds), "(", + Commas(extra_funds/Value(extra_edens)), "per eden)") + } +} + +func VisitCost(data planet_data, dims LogicalIndex, table []State, best PhysicalIndex) { + if dims[Visit] == 1 { + return + } + fmt.Println() + final_state := FinalState(dims) + for i := uint(0); i < uint(len(visit())); i++ { + all_bits := dims[Visit] - 1 + final_state[Visit] = all_bits & ^(1 << i) + alt_best := FindBestState(data, dims, table, final_state) + cost := table[alt_best].value - table[best].value + fmt.Printf("\r%11v Cost to visit %v\n", Commas(cost), visit()[i]) + } +} + +func EndLocationCost(data planet_data, dims LogicalIndex, table []State, best PhysicalIndex) { + if len(end()) == 0 { + return + } + fmt.Println() + final_state := FinalState(dims) + save_end_string := *end_string + *end_string = "" + end_cache = nil + alt_best := FindBestState(data, dims, table, final_state) + cost := table[alt_best].value - table[best].value + fmt.Printf("\r%11v Cost of --end %v\n", Commas(cost), save_end_string) + *end_string = save_end_string +} + +func DescribePath(data planet_data, dims LogicalIndex, table []State, start PhysicalIndex) []string { + var description []string + for index := start; table[index].from > FROM_ROOT; index = table[index].from { + if table[index].from == FROM_UNINITIALIZED { + panic(index) + } + var line string + addr := DecodeIndex(dims, index) + prev := DecodeIndex(dims, table[index].from) + if addr[Fuel] != prev[Fuel] { + from := data.i2p[prev[Location]] + to := data.i2p[addr[Location]] + line += fmt.Sprintf("Jump from %v to %v (%v hyper jump units)", from, to, prev[Fuel]-addr[Fuel]) + } + if addr[Edens] == prev[Edens]-1 { + from := data.i2p[prev[Location]] + to := data.i2p[addr[Location]] + line += fmt.Sprintf("Eden warp from %v to %v", from, to) + } + if addr[Hold] != prev[Hold] { + if addr[Hold] == 0 { + quantity := *hold - (prev[UnusedCargo] + prev[Edens] + prev[Cloaks]) + line += fmt.Sprintf("Sell %v %v", quantity, data.i2c[prev[Hold]]) + } else if prev[Hold] == 0 { + quantity := *hold - (addr[UnusedCargo] + addr[Edens] + addr[Cloaks]) + line += fmt.Sprintf("Buy %v %v", quantity, data.i2c[addr[Hold]]) + } else { + panic("Switched cargo?") } + + } + if addr[Cloaks] == 1 && prev[Cloaks] == 0 { + // TODO: Dump cloaks, convert from cargo? + line += "Buy a Cloak" + } + if addr[Edens] > prev[Edens] { + line += fmt.Sprint("Buy ", addr[Edens]-prev[Edens], " Eden Warp Units") + } + if addr[BuyShields] == 1 && prev[BuyShields] == 0 { + line += fmt.Sprint("Buy ", *batteries, " Shield Batterys") + } + if addr[BuyFighters] == 1 && prev[BuyFighters] == 0 { + line += fmt.Sprint("Buy ", *drones, " Fighter Drones") + } + if addr[Visit] != prev[Visit] { + // TODO: verify that the bit chat changed is addr[Location] + line += fmt.Sprint("Visit ", data.i2p[addr[Location]]) + } + if line == "" && addr[Hold] == prev[Hold] && addr[Traded] != prev[Traded] { + // The Traded dimension is for housekeeping. It doesn't directly + // correspond to in-game actions, so don't report transitions. + continue + } + if line == "" { + line = fmt.Sprint(prev, " -> ", addr) } + description = append(description, fmt.Sprintf("%13v ", Commas(table[index].value))+line) } - return best + return description } // (Example of a use case for generics in Go) @@ -388,21 +776,49 @@ func IndexCommodities(m *map[string]Commodity, start_at int) (map[string]int, [] func main() { flag.Parse() + if *start == "" || *funds == 0 { + print("--start and --funds are required. --help for more\n") + return + } + if *cpuprofile != "" { + f, err := os.Create(*cpuprofile) + if err != nil { + panic(err) + } + pprof.StartCPUProfile(f) + defer pprof.StopCPUProfile() + } data := ReadData() + if *drone_price > 0 { + temp := data.Commodities["Fighter Drones"] + temp.BasePrice = *drone_price + data.Commodities["Fighter Drones"] = temp + } + if *battery_price > 0 { + temp := data.Commodities["Shield Batterys"] + temp.BasePrice = *battery_price + data.Commodities["Shield Batterys"] = temp + } data.p2i, data.i2p = IndexPlanets(&data.Planets, 0) data.c2i, data.i2c = IndexCommodities(&data.Commodities, 1) dims := DimensionSizes(data) - table := FillStateTable1(data, dims) - table[0] = State{1, 1} - best_trades := FindBestTrades(data) - - for from := range data.Planets { - for to := range data.Planets { - best_trade := "(nothing)" - if best_trades[data.p2i[from]][data.p2i[to]] != "" { - best_trade = best_trades[data.p2i[from]][data.p2i[to]] - } - fmt.Printf("%s to %s: %s\n", from, to, best_trade) - } + table := CreateStateTable(data, dims) + final_state := FinalState(dims) + best := FindBestState(data, dims, table, final_state) + print("\n") + if best == -1 { + print("Cannot achieve success criteria\n") + return + } + description := DescribePath(data, dims, table, best) + for i := len(description) - 1; i >= 0; i-- { + fmt.Println(description[i]) + } + + if *extra_stats { + FighterAndShieldCost(data, dims, table, best) + EndEdensCost(data, dims, table, best) + VisitCost(data, dims, table, best) + EndLocationCost(data, dims, table, best) } }