X-Git-Url: http://git.scottworley.com/planeteer/blobdiff_plain/42f6427c1fe90b4ae6f93e0e8a5737b0a3b566f1..b7a6e28b4e3619a9b8ff18285bba9876de52549c:/planeteer.go?ds=inline diff --git a/planeteer.go b/planeteer.go index 5e406fa..82650b9 100644 --- a/planeteer.go +++ b/planeteer.go @@ -19,7 +19,7 @@ package main import "flag" import "fmt" -import "json" +import "encoding/json" import "os" import "runtime/pprof" import "strings" @@ -43,6 +43,8 @@ var fuel = flag.Int("fuel", 16, "Hyper Jump power left") var hold = flag.Int("hold", 300, "Size of your cargo hold") +var start_hold = flag.String("start_hold", "", "Start with a hold full of cargo") + var start_edens = flag.Int("start_edens", 0, "How many Eden Warp Units are you starting with?") @@ -63,10 +65,13 @@ var battery_price = flag.Int("battery_price", 0, "Today's Shield Battery price") var visit_string = flag.String("visit", "", "A comma-separated list of planets to make sure to visit") -var cpuprofile = flag.String("cpuprofile", "", "write cpu profile to file") +var tomorrow_weight = flag.Float64("tomorrow_weight", 1.0, + "Weight for the expected value of tomorrow's trading. 0.0 - 1.0") +var cpuprofile = flag.String("cpuprofile", "", "write cpu profile to file") var visit_cache []string + func visit() []string { if visit_cache == nil { if *visit_string == "" { @@ -78,6 +83,7 @@ func visit() []string { } var flight_plan_cache []string + func flight_plan() []string { if flight_plan_cache == nil { if *flight_plan_string == "" { @@ -89,6 +95,7 @@ func flight_plan() []string { } var end_cache map[string]bool + func end() map[string]bool { if end_cache == nil { if *end_string == "" { @@ -109,7 +116,9 @@ type Commodity struct { Limit int } type Planet struct { - BeaconOn bool + BeaconOn bool + Private bool + TomorrowValue int /* Use relative prices rather than absolute prices because you can get relative prices without traveling to each planet. */ RelativePrices map[string]int @@ -159,8 +168,8 @@ func ReadData() (data planet_data) { * handled as three dimensions rather than one for simplicity. Placing * these dimensions first causes the unused cells in the table to be * grouped together in large blocks. This keeps them from polluting - * cache lines, and if they are large enough, prevent the memory manager - * from allocating pages for these areas at all. + * cache lines, and if they are large enough, allows the memory manager + * to swap out entire pages. * * If the table gets too big to fit in RAM: * * Combine the Edens, Cloaks, and UnusedCargo dimensions. Of the @@ -176,16 +185,17 @@ func ReadData() (data planet_data) { // The official list of dimensions: const ( - // Name Num Size Description - Edens = iota // 1 3 # of Eden warp units (0 - 2 typically) - Cloaks // 2 2 # of Devices of Cloaking (0 or 1) - UnusedCargo // 3 4 # of unused cargo spaces (0 - 3 typically) - Fuel // 4 17 Hyper jump power left (0 - 16) - Location // 5 26 Location (which planet) - Hold // 6 15 Cargo bay contents (a *Commodity or nil) - BuyFighters // 7 2 Errand: Buy fighter drones - BuyShields // 8 2 Errand: Buy shield batteries - Visit // 9 2**N Visit: Stop by these N planets in the route + // Name Num Size Description + Edens = iota // 1 3 # of Eden warp units (0 - 2 typically) + Cloaks // 2 1-2 # of Devices of Cloaking (0 or 1) + UnusedCargo // 3 4 # of unused cargo spaces (0 - 3 typically) + Fuel // 4 17 Hyper jump power left (0 - 16) + Location // 5 26 Location (which planet) + Hold // 6 15 Cargo bay contents (a *Commodity or nil) + Traded // 7 2 Traded yet? + BuyFighters // 8 1-2 Errand: Buy fighter drones + BuyShields // 9 1-2 Errand: Buy shield batteries + Visit // 10 1-2**N Visit: Stop by these N planets in the route NumDimensions ) @@ -210,6 +220,7 @@ func DimensionSizes(data planet_data) []int { dims[Fuel] = *fuel + 1 dims[Location] = len(data.Planets) dims[Hold] = len(data.Commodities) + 1 + dims[Traded] = 2 dims[BuyFighters] = bint(*drones > 0) + 1 dims[BuyShields] = bint(*batteries > 0) + 1 dims[Visit] = 1 << uint(len(visit())) @@ -232,178 +243,204 @@ func StateTableSize(dims []int) int { } type State struct { - value, from int + value, from int32 } -func EncodeIndex(dims, addr []int) int { +const ( + FROM_ROOT = -2147483647 + iota + FROM_UNINITIALIZED + VALUE_UNINITIALIZED + VALUE_BEING_EVALUATED + VALUE_RUBISH +) + +func EncodeIndex(dims, addr []int) int32 { index := addr[0] if addr[0] > dims[0] { panic(0) } for i := 1; i < NumDimensions; i++ { - if addr[i] < 0 || addr[i] > dims[i] { + if addr[i] < 0 || addr[i] >= dims[i] { panic(i) } index = index*dims[i] + addr[i] } - return index + return int32(index) } -func DecodeIndex(dims []int, index int) []int { +func DecodeIndex(dims []int, index int32) []int { addr := make([]int, NumDimensions) for i := NumDimensions - 1; i > 0; i-- { - addr[i] = index % dims[i] - index /= dims[i] + addr[i] = int(index) % dims[i] + index /= int32(dims[i]) } - addr[0] = index + addr[0] = int(index) return addr } -func InitializeStateTable(data planet_data, dims []int) []State { +func CreateStateTable(data planet_data, dims []int) []State { table := make([]State, StateTableSize(dims)) + for i := range table { + table[i].value = VALUE_UNINITIALIZED + table[i].from = FROM_UNINITIALIZED + } addr := make([]int, NumDimensions) addr[Fuel] = *fuel addr[Edens] = *start_edens addr[Location] = data.p2i[*start] - table[EncodeIndex(dims, addr)].value = *funds + if *start_hold != "" { + addr[Hold] = data.c2i[*start_hold] + } + start_index := EncodeIndex(dims, addr) + table[start_index].value = int32(*funds) + table[start_index].from = FROM_ROOT return table } -/* These four fill procedures fill in the cell at address addr by - * looking at all the possible ways to reach this cell and selecting - * the best one. - * - * The other obvious implementation choice is to do this the other way - * around -- for each cell, conditionally overwrite all the other cells - * that are reachable *from* the considered cell. We choose gathering - * reads over scattering writes to avoid having to take a bunch of locks. - */ +/* CellValue fills in the one cell at address addr by looking at all + * the possible ways to reach this cell and selecting the best one. */ -func UpdateCell(table []State, here, there, value_difference int) { - possible_value := table[there].value + value_difference - if table[there].value > 0 && possible_value > table[here].value { - table[here].value = possible_value - table[here].from = there +func Consider(data planet_data, dims []int, table []State, there []int, value_difference int, best_value *int32, best_source []int) { + there_value := CellValue(data, dims, table, there) + if value_difference < 0 && int32(-value_difference) > there_value { + /* Can't afford this transition */ + return + } + possible_value := there_value + int32(value_difference) + if possible_value > *best_value { + *best_value = possible_value + copy(best_source, there) } } -func FillCellByArriving(data planet_data, dims []int, table []State, addr []int) { +var cell_filled_count int + +func CellValue(data planet_data, dims []int, table []State, addr []int) int32 { my_index := EncodeIndex(dims, addr) + if table[my_index].value == VALUE_BEING_EVALUATED { + panic("Circular dependency") + } + if table[my_index].value != VALUE_UNINITIALIZED { + return table[my_index].value + } + table[my_index].value = VALUE_BEING_EVALUATED + + best_value := int32(VALUE_RUBISH) + best_source := make([]int, NumDimensions) other := make([]int, NumDimensions) copy(other, addr) + planet := data.i2p[addr[Location]] - /* Travel here via a 2-fuel unit jump */ - if addr[Fuel]+2 < dims[Fuel] { - other[Fuel] = addr[Fuel] + 2 - for other[Location] = 0; other[Location] < dims[Location]; other[Location]++ { - if data.Planets[data.i2p[addr[Location]]].BeaconOn { - UpdateCell(table, my_index, EncodeIndex(dims, other), 0) + /* Travel here */ + if addr[Traded] == 0 { /* Can't have traded immediately after traveling. */ + other[Traded] = 1 /* Travel from states that have done trading. */ + + /* Travel here via a 2-fuel unit jump */ + if addr[Fuel]+2 < dims[Fuel] { + other[Fuel] = addr[Fuel] + 2 + hole_index := (dims[Fuel] - 1) - (addr[Fuel] + 2) + if hole_index >= len(flight_plan()) || addr[Location] != data.p2i[flight_plan()[hole_index]] { + for other[Location] = 0; other[Location] < dims[Location]; other[Location]++ { + if data.Planets[data.i2p[addr[Location]]].BeaconOn { + Consider(data, dims, table, other, 0, &best_value, best_source) + } + } } + other[Location] = addr[Location] + other[Fuel] = addr[Fuel] } - other[Location] = addr[Location] - other[Fuel] = addr[Fuel] - } - /* Travel here via a hyper hole */ - if addr[Fuel]+1 < dims[Fuel] { - hole_index := (dims[Fuel] - 1) - (addr[Fuel] + 1) - if hole_index < len(flight_plan()) && addr[Location] == data.p2i[flight_plan()[hole_index]] { - other[Fuel] = addr[Fuel] + 1 - for other[Location] = 0; other[Location] < dims[Location]; other[Location]++ { - UpdateCell(table, my_index, EncodeIndex(dims, other), 0) + /* Travel here via a 1-fuel unit jump (a hyper hole) */ + if addr[Fuel]+1 < dims[Fuel] { + hole_index := (dims[Fuel] - 1) - (addr[Fuel] + 1) + if hole_index < len(flight_plan()) && addr[Location] == data.p2i[flight_plan()[hole_index]] { + other[Fuel] = addr[Fuel] + 1 + for other[Location] = 0; other[Location] < dims[Location]; other[Location]++ { + Consider(data, dims, table, other, 0, &best_value, best_source) + } + other[Location] = addr[Location] + other[Fuel] = addr[Fuel] } - other[Location] = addr[Location] - other[Fuel] = addr[Fuel] } - } - /* Travel here via Eden Warp Unit */ - if addr[Edens]+1 < dims[Edens] && addr[UnusedCargo] > 1 { - _, available := data.Planets[data.i2p[addr[Location]]].RelativePrices["Eden Warp Units"] - if !available { - other[Edens] = addr[Edens] + 1 - other[UnusedCargo] = addr[UnusedCargo] - 1 - for other[Location] = 0; other[Location] < dims[Location]; other[Location]++ { - UpdateCell(table, my_index, EncodeIndex(dims, other), 0) + /* Travel here via Eden Warp Unit */ + if addr[Edens]+1 < dims[Edens] && addr[UnusedCargo] > 0 { + _, available := data.Planets[data.i2p[addr[Location]]].RelativePrices["Eden Warp Units"] + if !available { + other[Edens] = addr[Edens] + 1 + if other[Hold] != 0 { + other[UnusedCargo] = addr[UnusedCargo] - 1 + } + for other[Location] = 0; other[Location] < dims[Location]; other[Location]++ { + Consider(data, dims, table, other, 0, &best_value, best_source) + } + other[Location] = addr[Location] + other[UnusedCargo] = addr[UnusedCargo] + other[Edens] = addr[Edens] } - other[Location] = addr[Location] - other[UnusedCargo] = addr[UnusedCargo] - other[Edens] = addr[Edens] } + other[Traded] = addr[Traded] } -} -func FillCellBySelling(data planet_data, dims []int, table []State, addr []int) { - if addr[Hold] > 0 { - // Can't sell and still have cargo - return - } - if addr[UnusedCargo] > 0 { - // Can't sell everything and still have 'unused' holds - return - } - my_index := EncodeIndex(dims, addr) - other := make([]int, NumDimensions) - copy(other, addr) - planet := data.i2p[addr[Location]] - for other[Hold] = 0; other[Hold] < dims[Hold]; other[Hold]++ { - commodity := data.i2c[other[Hold]] - if !data.Commodities[commodity].CanSell { - // TODO: Dump cargo - continue - } - relative_price, available := data.Planets[planet].RelativePrices[commodity] - if !available { - continue - } - base_price := data.Commodities[commodity].BasePrice - absolute_price := float64(base_price) * float64(relative_price) / 100.0 - sell_price := int(absolute_price * 0.9) + /* Trade */ + if addr[Traded] == 1 { + other[Traded] = 0 - for other[UnusedCargo] = 0; other[UnusedCargo] < dims[UnusedCargo]; other[UnusedCargo]++ { + /* Consider not trading */ + Consider(data, dims, table, other, 0, &best_value, best_source) - quantity := *hold - (other[UnusedCargo] + other[Cloaks] + other[Edens]) - sale_value := quantity * sell_price - UpdateCell(table, my_index, EncodeIndex(dims, other), sale_value) - } - } - other[UnusedCargo] = addr[UnusedCargo] -} + if !data.Planets[data.i2p[addr[Location]]].Private { -func FillCellByBuying(data planet_data, dims []int, table []State, addr []int) { - if addr[Hold] == 0 { - // Can't buy and then have nothing - return - } - my_index := EncodeIndex(dims, addr) - other := make([]int, NumDimensions) - copy(other, addr) - planet := data.i2p[addr[Location]] - commodity := data.i2c[addr[Hold]] - if !data.Commodities[commodity].CanSell { - return - } - relative_price, available := data.Planets[planet].RelativePrices[commodity] - if !available { - return - } - base_price := data.Commodities[commodity].BasePrice - absolute_price := int(float64(base_price) * float64(relative_price) / 100.0) - quantity := *hold - (addr[UnusedCargo] + addr[Cloaks] + addr[Edens]) - total_price := quantity * absolute_price - other[Hold] = 0 - other[UnusedCargo] = 0 - UpdateCell(table, my_index, EncodeIndex(dims, other), -total_price) - other[UnusedCargo] = addr[UnusedCargo] - other[Hold] = addr[Hold] -} + /* Sell */ + if addr[Hold] == 0 && addr[UnusedCargo] == 0 { + for other[Hold] = 0; other[Hold] < dims[Hold]; other[Hold]++ { + commodity := data.i2c[other[Hold]] + if !data.Commodities[commodity].CanSell { + continue + } + relative_price, available := data.Planets[planet].RelativePrices[commodity] + if !available { + // TODO: Dump cargo + continue + } + base_price := data.Commodities[commodity].BasePrice + absolute_price := float64(base_price) * float64(relative_price) / 100.0 + sell_price := int(absolute_price * 0.9) + + for other[UnusedCargo] = 0; other[UnusedCargo] < dims[UnusedCargo]; other[UnusedCargo]++ { + quantity := *hold - (other[UnusedCargo] + other[Cloaks] + other[Edens]) + sale_value := quantity * sell_price + Consider(data, dims, table, other, sale_value, &best_value, best_source) + } + } + other[UnusedCargo] = addr[UnusedCargo] + other[Hold] = addr[Hold] + } -func FillCellByMisc(data planet_data, dims []int, table []State, addr []int) { - my_index := EncodeIndex(dims, addr) - other := make([]int, NumDimensions) - copy(other, addr) + /* Buy */ + other[Traded] = addr[Traded] /* Buy after selling */ + if addr[Hold] != 0 { + commodity := data.i2c[addr[Hold]] + if data.Commodities[commodity].CanSell { + relative_price, available := data.Planets[planet].RelativePrices[commodity] + if available { + base_price := data.Commodities[commodity].BasePrice + absolute_price := int(float64(base_price) * float64(relative_price) / 100.0) + quantity := *hold - (addr[UnusedCargo] + addr[Cloaks] + addr[Edens]) + total_price := quantity * absolute_price + other[Hold] = 0 + other[UnusedCargo] = 0 + Consider(data, dims, table, other, -total_price, &best_value, best_source) + other[UnusedCargo] = addr[UnusedCargo] + other[Hold] = addr[Hold] + } + } + } + } + other[Traded] = addr[Traded] + } /* Buy a Device of Cloaking */ if addr[Cloaks] == 1 && addr[UnusedCargo] < dims[UnusedCargo]-1 { @@ -414,21 +451,19 @@ func FillCellByMisc(data planet_data, dims []int, table []State, addr []int) { if other[Hold] != 0 { other[UnusedCargo] = addr[UnusedCargo] + 1 } - UpdateCell(table, my_index, EncodeIndex(dims, other), -absolute_price) + Consider(data, dims, table, other, -absolute_price, &best_value, best_source) other[UnusedCargo] = addr[UnusedCargo] other[Cloaks] = addr[Cloaks] } } - /* Silly: Dump a Device of Cloaking */ - /* Buy Fighter Drones */ if addr[BuyFighters] == 1 { relative_price, available := data.Planets[data.i2p[addr[Location]]].RelativePrices["Fighter Drones"] if available { absolute_price := int(float64(data.Commodities["Fighter Drones"].BasePrice) * float64(relative_price) / 100.0) other[BuyFighters] = 0 - UpdateCell(table, my_index, EncodeIndex(dims, other), -absolute_price * *drones) + Consider(data, dims, table, other, -absolute_price**drones, &best_value, best_source) other[BuyFighters] = addr[BuyFighters] } } @@ -439,28 +474,20 @@ func FillCellByMisc(data planet_data, dims []int, table []State, addr []int) { if available { absolute_price := int(float64(data.Commodities["Shield Batterys"].BasePrice) * float64(relative_price) / 100.0) other[BuyShields] = 0 - UpdateCell(table, my_index, EncodeIndex(dims, other), -absolute_price * *batteries) + Consider(data, dims, table, other, -absolute_price**batteries, &best_value, best_source) other[BuyShields] = addr[BuyShields] } } /* Visit this planet */ - var i uint - for i = 0; i < uint(len(visit())); i++ { - if addr[Visit] & (1 << i) != 0 && visit()[i] == data.i2p[addr[Location]] { + for i := uint(0); i < uint(len(visit())); i++ { + if addr[Visit]&(1< 0 && addr[Edens] <= eden_limit { @@ -473,124 +500,83 @@ func FillCellByBuyingEdens(data planet_data, dims []int, table []State, addr []i other[UnusedCargo] = addr[UnusedCargo] + quantity } if other[UnusedCargo] < dims[UnusedCargo] { - UpdateCell(table, my_index, EncodeIndex(dims, other), -absolute_price * quantity) + Consider(data, dims, table, other, -absolute_price*quantity, &best_value, best_source) } } other[Edens] = addr[Edens] other[UnusedCargo] = addr[UnusedCargo] } } -} -func FillStateTable2Iteration(data planet_data, dims []int, table []State, -addr []int, f func(planet_data, []int, []State, []int)) { - /* TODO: Justify the safety of the combination of this dimension - * iteration and the various phases f. */ - for addr[Hold] = 0; addr[Hold] < dims[Hold]; addr[Hold]++ { - for addr[Cloaks] = 0; addr[Cloaks] < dims[Cloaks]; addr[Cloaks]++ { - for addr[UnusedCargo] = 0; addr[UnusedCargo] < dims[UnusedCargo]; addr[UnusedCargo]++ { - for addr[BuyFighters] = 0; addr[BuyFighters] < dims[BuyFighters]; addr[BuyFighters]++ { - for addr[BuyShields] = 0; addr[BuyShields] < dims[BuyShields]; addr[BuyShields]++ { - for addr[Visit] = 0; addr[Visit] < dims[Visit]; addr[Visit]++ { - f(data, dims, table, addr) - } - } - } - } + // Check that we didn't lose track of any temporary modifications to other. + for i := 0; i < NumDimensions; i++ { + if addr[i] != other[i] { + panic(i) } } -} -func FillStateTable2(data planet_data, dims []int, table []State, -addr []int, barrier chan<- bool) { - FillStateTable2Iteration(data, dims, table, addr, FillCellByArriving) - FillStateTable2Iteration(data, dims, table, addr, FillCellBySelling) - FillStateTable2Iteration(data, dims, table, addr, FillCellByBuying) - FillStateTable2Iteration(data, dims, table, addr, FillCellByMisc) - FillStateTable2Iteration(data, dims, table, addr, FillCellByBuyingEdens) - if barrier != nil { - barrier <- true + // Sanity check: This cell was in state BEING_EVALUATED + // the whole time that it was being evaluated. + if table[my_index].value != VALUE_BEING_EVALUATED { + panic(my_index) } -} -/* Filling the state table is a set of nested for loops NumDimensions deep. - * We split this into two procedures: 1 and 2. #1 is the outer, slowest- - * changing indexes. #1 fires off many calls to #2 that run in parallel. - * The order of the nesting of the dimensions, the order of iteration within - * each dimension, and where the 1 / 2 split is placed are carefully chosen - * to make this arrangement safe. - * - * Outermost two layers: Go from high-energy states (lots of fuel, edens) to - * low-energy state. These must be processed sequentially and in this order - * because you travel through high-energy states to get to the low-energy - * states. - * - * Third layer: Planet. This is a good layer to parallelize on. There's - * high enough cardinality that we don't have to mess with parallelizing - * multiple layers for good utilization (on 2011 machines). Each thread - * works on one planet's states and need not synchronize with peer threads. - */ -func FillStateTable1(data planet_data, dims []int, table []State) { - barrier := make(chan bool, len(data.Planets)) - eden_capacity := data.Commodities["Eden Warp Units"].Limit - work_units := (float64(*fuel) + 1) * (float64(eden_capacity) + 1) - work_done := 0.0 - for fuel_remaining := *fuel; fuel_remaining >= 0; fuel_remaining-- { - /* Make an Eden-buying pass (Eden vendors' energy gradient - * along the Edens dimension runs backwards) */ - for edens_remaining := 0; edens_remaining <= eden_capacity; edens_remaining++ { - for planet := range data.Planets { - if _, available := data.Planets[planet].RelativePrices["Eden Warp Units"]; available { - addr := make([]int, len(dims)) - addr[Edens] = edens_remaining - addr[Fuel] = fuel_remaining - addr[Location] = data.p2i[planet] - FillStateTable2(data, dims, table, addr, nil) - } - } - } - for edens_remaining := eden_capacity; edens_remaining >= 0; edens_remaining-- { - /* Do the brunt of the work */ - for planet := range data.Planets { - addr := make([]int, len(dims)) - addr[Edens] = edens_remaining - addr[Fuel] = fuel_remaining - addr[Location] = data.p2i[planet] - go FillStateTable2(data, dims, table, addr, barrier) - } - for _ = range data.Planets { - <-barrier - } - work_done++ - print(fmt.Sprintf("\r%3.0f%%", 100*work_done/work_units)) - } + // Record our findings + table[my_index].value = best_value + table[my_index].from = EncodeIndex(dims, best_source) + + // UI: Progress bar + cell_filled_count++ + if cell_filled_count&0xfff == 0 { + print(fmt.Sprintf("\r%3.1f%%", 100*float64(cell_filled_count)/float64(StateTableSize(dims)))) } - print("\n") + + return table[my_index].value } -func FindBestState(data planet_data, dims []int, table []State) int { +func FinalState(dims []int) []int { addr := make([]int, NumDimensions) addr[Edens] = *end_edens addr[Cloaks] = dims[Cloaks] - 1 addr[BuyFighters] = dims[BuyFighters] - 1 addr[BuyShields] = dims[BuyShields] - 1 addr[Visit] = dims[Visit] - 1 - // Fuel, Hold, UnusedCargo left at 0 - max_index := -1 - max_value := 0 - for addr[Location] = 0; addr[Location] < dims[Location]; addr[Location]++ { - if len(end()) == 0 || end()[data.i2p[addr[Location]]] { - index := EncodeIndex(dims, addr) - if table[index].value > max_value { - max_value = table[index].value - max_index = index + addr[Traded] = 1 + addr[Hold] = 0 + addr[UnusedCargo] = 0 + // Fuel and Location are determined by FindBestState + return addr +} + +func FindBestState(data planet_data, dims []int, table []State, addr []int) int32 { + max_index := int32(-1) + max_value := 0.0 + max_fuel := 1 + if *fuel == 0 { + max_fuel = 0 + } + for addr[Fuel] = 0; addr[Fuel] <= max_fuel; addr[Fuel]++ { + for addr[Location] = 0; addr[Location] < dims[Location]; addr[Location]++ { + planet := data.i2p[addr[Location]] + if len(end()) == 0 || end()[planet] { + index := EncodeIndex(dims, addr) + today_value := CellValue(data, dims, table, addr) + tomorrow_value := *tomorrow_weight * float64(*hold+data.Planets[planet].TomorrowValue) + value := float64(today_value) + tomorrow_value + if value > max_value { + max_value = value + max_index = index + } } } } return max_index } -func Commas(n int) (s string) { +func Commas(n int32) (s string) { + if n < 0 { + panic(n) + } r := n % 1000 n /= 1000 for n > 0 { @@ -602,8 +588,11 @@ func Commas(n int) (s string) { return } -func DescribePath(data planet_data, dims []int, table []State, start int) (description []string) { - for index := start; index > 0 && table[index].from > 0; index = table[index].from { +func DescribePath(data planet_data, dims []int, table []State, start int32) (description []string) { + for index := start; table[index].from > FROM_ROOT; index = table[index].from { + if table[index].from == FROM_UNINITIALIZED { + panic(index) + } var line string addr := DecodeIndex(dims, index) prev := DecodeIndex(dims, table[index].from) @@ -612,7 +601,7 @@ func DescribePath(data planet_data, dims []int, table []State, start int) (descr to := data.i2p[addr[Location]] line += fmt.Sprintf("Jump from %v to %v (%v hyper jump units)", from, to, prev[Fuel]-addr[Fuel]) } - if addr[Edens] == prev[Edens] - 1 { + if addr[Edens] == prev[Edens]-1 { from := data.i2p[prev[Location]] to := data.i2p[addr[Location]] line += fmt.Sprintf("Eden warp from %v to %v", from, to) @@ -634,7 +623,7 @@ func DescribePath(data planet_data, dims []int, table []State, start int) (descr line += "Buy a Cloak" } if addr[Edens] > prev[Edens] { - line += fmt.Sprint("Buy ", addr[Edens] - prev[Edens], " Eden Warp Units") + line += fmt.Sprint("Buy ", addr[Edens]-prev[Edens], " Eden Warp Units") } if addr[BuyShields] == 1 && prev[BuyShields] == 0 { line += fmt.Sprint("Buy ", *batteries, " Shield Batterys") @@ -646,10 +635,15 @@ func DescribePath(data planet_data, dims []int, table []State, start int) (descr // TODO: verify that the bit chat changed is addr[Location] line += fmt.Sprint("Visit ", data.i2p[addr[Location]]) } + if line == "" && addr[Hold] == prev[Hold] && addr[Traded] != prev[Traded] { + // The Traded dimension is for housekeeping. It doesn't directly + // correspond to in-game actions, so don't report transitions. + continue + } if line == "" { line = fmt.Sprint(prev, " -> ", addr) } - description = append(description, fmt.Sprintf("%13v ", Commas(table[index].value)) + line) + description = append(description, fmt.Sprintf("%13v ", Commas(table[index].value))+line) } return } @@ -680,6 +674,10 @@ func IndexCommodities(m *map[string]Commodity, start_at int) (map[string]int, [] func main() { flag.Parse() + if *start == "" || *funds == 0 { + print("--start and --funds are required. --help for more\n") + return + } if *cpuprofile != "" { f, err := os.Create(*cpuprofile) if err != nil { @@ -702,15 +700,65 @@ func main() { data.p2i, data.i2p = IndexPlanets(&data.Planets, 0) data.c2i, data.i2c = IndexCommodities(&data.Commodities, 1) dims := DimensionSizes(data) - table := InitializeStateTable(data, dims) - FillStateTable1(data, dims, table) - best := FindBestState(data, dims, table) + table := CreateStateTable(data, dims) + final_state := FinalState(dims) + best := FindBestState(data, dims, table, final_state) + print("\n") if best == -1 { print("Cannot acheive success criteria\n") - } else { - description := DescribePath(data, dims, table, best) - for i := len(description) - 1; i >= 0; i-- { - fmt.Println(description[i]) - } + return + } + description := DescribePath(data, dims, table, best) + for i := len(description) - 1; i >= 0; i-- { + fmt.Println(description[i]) + } + + // Ok, that was the important stuff. Now some fun stuff. + + // Calculate total cost of fighters and shields + if *drones > 0 || *batteries > 0 { + fmt.Println() + } + if *drones > 0 { + final_state[BuyFighters] = 0 + alt_best := FindBestState(data, dims, table, final_state) + cost := table[alt_best].value - table[best].value + fmt.Println("\rDrones were", float64(cost)/float64(*drones), "each") + final_state[BuyFighters] = 1 + } + if *batteries > 0 { + final_state[BuyShields] = 0 + alt_best := FindBestState(data, dims, table, final_state) + cost := table[alt_best].value - table[best].value + fmt.Println("\rBatteries were", float64(cost)/float64(*batteries), "each") + final_state[BuyShields] = 1 } + + // Use extra eden warps + if *end_edens > 0 { + fmt.Println() + } + for extra_edens := 1; extra_edens <= *end_edens; extra_edens++ { + final_state[Edens] = *end_edens - extra_edens + alt_best := FindBestState(data, dims, table, final_state) + extra_funds := table[alt_best].value - table[best].value + fmt.Println("\rUse", extra_edens, "extra edens, make an extra", + Commas(extra_funds), "(", + Commas(extra_funds/int32(extra_edens)), "per eden)") + } + final_state[Edens] = *end_edens + + // Cost of visiting places + if dims[Visit] > 1 { + fmt.Println() + } + for i := uint(0); i < uint(len(visit())); i++ { + all_bits := dims[Visit] - 1 + final_state[Visit] = all_bits & ^(1 << i) + alt_best := FindBestState(data, dims, table, final_state) + cost := table[alt_best].value - table[best].value + fmt.Println("\r", Commas(cost), "Cost to visit", visit()[i]) + } + final_state[Visit] = dims[Visit] - 1 + }