X-Git-Url: http://git.scottworley.com/planeteer/blobdiff_plain/12bc2cd7978b665b549616b9c36c8e83ab3cc608..e9ff66cfc8acb7e129609d23d338f69699ed989f:/planeteer.go diff --git a/planeteer.go b/planeteer.go index 57f00ec..33f859e 100644 --- a/planeteer.go +++ b/planeteer.go @@ -18,33 +18,63 @@ package main import "flag" +import "fmt" import "json" import "os" -import "fmt" +import "strings" + +var start = flag.String("start", "", + "The planet to start at") + +var end = flag.String("end", "", + "A comma-separated list of acceptable ending planets.") -var datafile = flag.String("planet_data_file", "planet-data", +var planet_data_file = flag.String("planet_data_file", "planet-data", "The file to read planet data from") +var fuel = flag.Int("fuel", 16, "Reactor units") + +var hold = flag.Int("hold", 300, "Size of your cargo hold") + +var start_edens = flag.Int("start_edens", 0, + "How many Eden Warp Units are you starting with?") + +var end_edens = flag.Int("end_edens", 0, + "How many Eden Warp Units would you like to keep (not use)?") + +var cloak = flag.Bool("cloak", false, + "Make sure to end with a Device of Cloaking") + +var drones = flag.Int("drones", 0, "Buy this many Fighter Drones") + +var batteries = flag.Int("batteries", 0, "Buy this many Shield Batterys") + +var visit_string = flag.String("visit", "", + "A comma-separated list of planets to make sure to visit") + +func visit() []string { + return strings.Split(*visit_string, ",") +} + type Commodity struct { - Name string BasePrice int CanSell bool Limit int } type Planet struct { - Name string BeaconOn bool /* Use relative prices rather than absolute prices because you can get relative prices without traveling to each planet. */ - RelativePrices map [string] int + RelativePrices map[string]int } type planet_data struct { - Commodities []Commodity - Planets []Planet + Commodities map[string]Commodity + Planets map[string]Planet + pi, ci map[string]int // Generated; not read from file } func ReadData() (data planet_data) { - f, err := os.Open(*datafile) + f, err := os.Open(*planet_data_file) if err != nil { panic(err) } @@ -56,42 +86,154 @@ func ReadData() (data planet_data) { return } -func TradeValue(from, to *Planet, - commodity *Commodity, - quantity int) int { - if !commodity.CanSell { +/* This program operates by filling in a state table representing the best + * possible trips you could make; the ones that makes you the most money. + * This is feasible because we don't look at all the possible trips. + * We define a list of things that are germane to this game and then only + * consider the best outcome in each possible game state. + * + * Each cell in the table represents a state in the game. In each cell, + * we track two things: 1. the most money you could possibly have while in + * that state and 2. one possible way to get into that state with that + * amount of money. + * + * A basic analysis can be done with a two-dimensional table: location and + * fuel. planeteer-1.0 used this two-dimensional table. This version + * adds features mostly by adding dimensions to this table. + * + * Note that the sizes of each dimension are data driven. Many dimensions + * collapse to one possible value (ie, disappear) if the corresponding + * feature is not enabled. + */ + +// The official list of dimensions: +const ( + // Name Num Size Description + Edens = iota // 1 3 # of Eden warp units (0 - 2 typically) + Cloaks // 2 2 # of Devices of Cloaking (0 or 1) + UnusedCargo // 3 4 # of unused cargo spaces (0 - 3 typically) + Fuel // 4 17 Reactor power left (0 - 16) + Location // 5 26 Location (which planet) + Hold // 6 15 Cargo bay contents (a *Commodity or nil) + NeedFighters // 7 2 Errand: Buy fighter drones (needed or not) + NeedShields // 8 2 Errand: Buy shield batteries (needed or not) + Visit // 9 2**N Visit: Stop by these N planets in the route + + NumDimensions +) + +func bint(b bool) int { + if b { + return 1 + } + return 0 +} + +func DimensionSizes(data planet_data) []int { + eden_capacity := data.Commodities["Eden Warp Units"].Limit + cloak_capacity := bint(*cloak) + dims := []int{ + eden_capacity + 1, + cloak_capacity + 1, + eden_capacity + cloak_capacity + 1, + *fuel + 1, + len(data.Planets), + len(data.Commodities), + bint(*drones > 0) + 1, + bint(*batteries > 0) + 1, + 1 << uint(len(visit())), + } + if len(dims) != NumDimensions { + panic("Dimensionality mismatch") + } + return dims +} + +func StateTableSize(dims []int) int { + sum := 0 + for _, size := range dims { + sum += size + } + return sum +} + +type State struct { + funds, from int +} + +func NewStateTable(dims []int) []State { + return make([]State, StateTableSize(dims)) +} + +func EncodeIndex(dims, addr []int) int { + index := addr[0] + for i := 1; i < len(dims); i++ { + index = index*dims[i] + addr[i] + } + return index +} + +func DecodeIndex(dims []int, index int) []int { + addr := make([]int, len(dims)) + for i := len(dims) - 1; i > 0; i-- { + addr[i] = index % dims[i] + index /= dims[i] + } + addr[0] = index + return addr +} + +/* What is the value of hauling 'commodity' from 'from' to 'to'? + * Take into account the available funds and the available cargo space. */ +func TradeValue(data planet_data, +from, to Planet, +commodity string, +initial_funds, max_quantity int) int { + if !data.Commodities[commodity].CanSell { return 0 } - from_relative_price, from_available := from.RelativePrices[commodity.Name] + from_relative_price, from_available := from.RelativePrices[commodity] if !from_available { return 0 } - to_relative_price, to_available := to.RelativePrices[commodity.Name] + to_relative_price, to_available := to.RelativePrices[commodity] if !to_available { return 0 } - from_absolute_price := from_relative_price * commodity.BasePrice - to_absolute_price := to_relative_price * commodity.BasePrice + base_price := data.Commodities[commodity].BasePrice + from_absolute_price := from_relative_price * base_price + to_absolute_price := to_relative_price * base_price buy_price := from_absolute_price sell_price := int(float64(to_absolute_price) * 0.9) - return (sell_price - buy_price) * quantity - + var can_afford int = initial_funds / buy_price + quantity := can_afford + if quantity > max_quantity { + quantity = max_quantity + } + return (sell_price - buy_price) * max_quantity } -func FindBestTrades(data planet_data) [][]*Commodity { - best := make([][]*Commodity, len(data.Planets)) - for from_index := range data.Planets { - best[from_index] = make([]*Commodity, len(data.Planets)) - for to_index := range data.Planets { +func FindBestTrades(data planet_data) [][]string { + // TODO: We can't cache this because this can change based on available funds. + best := make([][]string, len(data.Planets)) + for from := range data.Planets { + best[data.pi[from]] = make([]string, len(data.Planets)) + for to := range data.Planets { best_gain := 0 - for commodity_index := range data.Commodities { - gain := TradeValue(&data.Planets[from_index], - &data.Planets[to_index], - &data.Commodities[commodity_index], - 1) + price_list := data.Planets[from].RelativePrices + if len(data.Planets[to].RelativePrices) < len(data.Planets[from].RelativePrices) { + price_list = data.Planets[to].RelativePrices + } + for commodity := range price_list { + gain := TradeValue(data, + data.Planets[from], + data.Planets[to], + commodity, + 10000000, + 1) if gain > best_gain { - best[from_index][to_index] = &data.Commodities[commodity_index] + best[data.pi[from]][data.pi[to]] = commodity gain = best_gain } } @@ -100,17 +242,43 @@ func FindBestTrades(data planet_data) [][]*Commodity { return best } +// (Example of a use case for generics in Go) +func IndexPlanets(m *map[string]Planet) map[string]int { + index := make(map[string]int, len(*m)) + i := 0 + for e := range *m { + index[e] = i + i++ + } + return index +} +func IndexCommodities(m *map[string]Commodity) map[string]int { + index := make(map[string]int, len(*m)) + i := 0 + for e := range *m { + index[e] = i + i++ + } + return index +} + func main() { flag.Parse() data := ReadData() + data.pi = IndexPlanets(&data.Planets) + data.ci = IndexCommodities(&data.Commodities) + dims := DimensionSizes(data) + table := NewStateTable(dims) + table[0] = State{1, 1} best_trades := FindBestTrades(data) - for from_index, from_planet := range data.Planets { - for to_index, to_planet := range data.Planets { + + for from := range data.Planets { + for to := range data.Planets { best_trade := "(nothing)" - if best_trades[from_index][to_index] != nil { - best_trade = best_trades[from_index][to_index].Name + if best_trades[data.pi[from]][data.pi[to]] != "" { + best_trade = best_trades[data.pi[from]][data.pi[to]] } - fmt.Printf("%s to %s: %s\n", from_planet.Name, to_planet.Name, best_trade) + fmt.Printf("%s to %s: %s\n", from, to, best_trade) } } }