var start = flag.String("start", "",
"The planet to start at")
+var flight_plan_string = flag.String("flight_plan", "",
+ "Your hidey-holes for the day, comma-separated.")
+
var end = flag.String("end", "",
"A comma-separated list of acceptable ending planets.")
"A comma-separated list of planets to make sure to visit")
func visit() []string {
+ if *visit_string == "" {
+ return []string{}
+ }
return strings.Split(*visit_string, ",")
}
+func flight_plan() []string {
+ if *flight_plan_string == "" {
+ return []string{}
+ }
+ return strings.Split(*flight_plan_string, ",")
+}
+
type Commodity struct {
BasePrice int
CanSell bool
* grouped together in large blocks. This keeps them from polluting
* cache lines, and if they are large enough, prevent the memory manager
* from allocating pages for these areas at all.
+ *
+ * If the table gets too big to fit in RAM:
+ * * Combine the Edens, Cloaks, and UnusedCargo dimensions. Of the
+ * 24 combinations, only 15 are legal: a 38% savings.
+ * * Reduce the size of the Fuel dimension to 3. We only ever look
+ * backwards 2 units, so just rotate the logical values through
+ * the same 3 physical addresses. This is good for an 82% savings.
+ * * Reduce the size of the Edens dimension from 3 to 2, for the
+ * same reasons as Fuel above. 33% savings.
+ * * Buy more ram. (Just sayin'. It's cheaper than you think.)
+ *
*/
// The official list of dimensions:
}
func StateTableSize(dims []int) int {
- sum := 0
+ product := 1
for _, size := range dims {
- sum += size
+ product *= size
}
- return sum
+ return product
}
type State struct {
- funds, from int
+ value, from int
}
func EncodeIndex(dims, addr []int) int {
index := addr[0]
+ if addr[0] > dims[0] {
+ panic(0)
+ }
for i := 1; i < len(dims); i++ {
+ if addr[i] > dims[i] {
+ panic(i)
+ }
index = index*dims[i] + addr[i]
}
return index
return addr
}
-func FillStateCell(data planet_data, dims []int, table []State, addr []int) {
+func InitializeStateTable(data planet_data, dims []int, table []State) {
+}
+
+/* Fill in the cell at address addr by looking at all the possible ways
+ * to reach this cell and selecting the best one.
+ *
+ * The other obvious implementation choice is to do this the other way
+ * around -- for each cell, conditionally overwrite all the other cells
+ * that are reachable *from* the considered cell. We choose gathering
+ * reads over scattering writes to avoid having to take a bunch of locks.
+ *
+ * The order that we check things here matters only for value ties. We
+ * keep the first best path. So when action order doesn't matter, the
+ * check that is performed first here will appear in the output first.
+ */
+func FillStateTableCell(data planet_data, dims []int, table []State, addr []int) {
+ my_index := EncodeIndex(dims, addr)
+ other := make([]int, NumDimensions)
+ copy(other, addr)
+
+ /* Travel here via a 2-fuel unit jump */
+ if addr[Fuel] + 2 < dims[Fuel] {
+ other[Fuel] = addr[Fuel] + 2
+ for p := 0; p < dims[Location]; p++ {
+ other[Location] = p
+ if table[EncodeIndex(dims, other)].value > table[my_index].value {
+ table[my_index].value = table[EncodeIndex(dims, other)].value
+ table[my_index].from = EncodeIndex(dims, other)
+ }
+ }
+ other[Location] = addr[Location]
+ other[Fuel] = addr[Fuel]
+ }
+
+ /* Travel here via a hidey hole */
+ if addr[Fuel] + 1 < dims[Fuel] {
+ hole_index := (dims[Fuel] - 1) - (addr[Fuel] + 1)
+ if hole_index < len(flight_plan()) {
+ other[Fuel] = addr[Fuel] + 1
+ other[Location] = data.p2i[flight_plan()[hole_index]]
+ if table[EncodeIndex(dims, other)].value > table[my_index].value {
+ table[my_index].value = table[EncodeIndex(dims, other)].value
+ table[my_index].from = EncodeIndex(dims, other)
+ }
+ other[Fuel] = addr[Fuel]
+ }
+ }
+
+ /* Travel here via Eden Warp Unit */
+ /* Silly: Dump Eden warp units */
+ /* Buy Eden warp units */
+ /* Buy a Device of Cloaking */
+ /* Silly: Dump a Device of Cloaking */
+ /* Buy Fighter Drones */
+ /* Buy Shield Batteries */
+ if addr[Hold] == 0 {
+ /* Sell or dump things */
+ // for commodity := range data.Commodities { }
+ } else {
+ /* Buy this thing */
+ }
+ /* Visit this planet */
}
func FillStateTable2(data planet_data, dims []int, table []State,
for addr[NeedFighters] = 0; addr[NeedFighters] < dims[NeedFighters]; addr[NeedFighters]++ {
for addr[NeedShields] = 0; addr[NeedShields] < dims[NeedShields]; addr[NeedShields]++ {
for addr[Visit] = 0; addr[Visit] < dims[Visit]; addr[Visit]++ {
- FillStateCell(data, dims, table, addr)
+ FillStateTableCell(data, dims, table, addr)
}
}
}
* multiple layers for good utilization (on 2011 machines). Each thread
* works on one planet's states and need not synchronize with peer threads.
*/
-func FillStateTable1(data planet_data, dims []int) []State {
- table := make([]State, StateTableSize(dims))
+func FillStateTable1(data planet_data, dims []int, table []State) {
barrier := make(chan bool, len(data.Planets))
eden_capacity := data.Commodities["Eden Warp Units"].Limit
work_units := (float64(*fuel) + 1) * (float64(eden_capacity) + 1)
fmt.Printf("\r%3.0f%%", 100*work_done/work_units)
}
}
- return table
+ print("\n")
}
/* What is the value of hauling 'commodity' from 'from' to 'to'?
data.p2i, data.i2p = IndexPlanets(&data.Planets, 0)
data.c2i, data.i2c = IndexCommodities(&data.Commodities, 1)
dims := DimensionSizes(data)
- table := FillStateTable1(data, dims)
- table[0] = State{1, 1}
+ table := make([]State, StateTableSize(dims))
+ InitializeStateTable(data, dims, table)
+ FillStateTable1(data, dims, table)
+ print("Going to print state table...")
+ fmt.Printf("%v", table)
best_trades := FindBestTrades(data)
for from := range data.Planets {