import "flag"
import "fmt"
-import "json"
+import "encoding/json"
import "os"
import "runtime/pprof"
import "strings"
var visit_string = flag.String("visit", "",
"A comma-separated list of planets to make sure to visit")
+var tomorrow_weight = flag.Float64("tomorrow_weight", 1.0,
+ "Weight for the expected value of tomorrow's trading. 0.0 - 1.0")
+
+var extra_stats = flag.Bool("extra_stats", true,
+ "Show additional information of possible interest")
+
var cpuprofile = flag.String("cpuprofile", "", "write cpu profile to file")
var visit_cache []string
Limit int
}
type Planet struct {
- BeaconOn bool
- Private bool
+ BeaconOn bool
+ Private bool
+ TomorrowValue int
/* Use relative prices rather than absolute prices because you
can get relative prices without traveling to each planet. */
RelativePrices map[string]int
i2p, i2c []string // Generated; not read from file
}
-func ReadData() (data planet_data) {
- f, err := os.Open(*planet_data_file)
+func json_slurp(filename string, receptacle interface{}) error {
+ f, err := os.Open(filename)
if err != nil {
- panic(err)
+ return err
}
defer f.Close()
- err = json.NewDecoder(f).Decode(&data)
+ err = json.NewDecoder(f).Decode(receptacle)
+ if err != nil {
+ return err
+ }
+ return nil
+}
+
+func ReadData() (data planet_data) {
+ err := json_slurp(*planet_data_file, &data)
if err != nil {
panic(err)
}
* independent -- some combinations are illegal and not used. They are
* handled as three dimensions rather than one for simplicity. Placing
* these dimensions first causes the unused cells in the table to be
- * grouped together in large blocks. This keeps them from polluting
- * cache lines, and if they are large enough, allows the memory manager
- * to swap out entire pages.
+ * grouped together in large blocks. This keeps the unused cells from
+ * polluting cache lines, and if the spans of unused cells are large
+ * enough, allows the memory manager to swap out entire pages.
*
* If the table gets too big to fit in RAM:
* * Combine the Edens, Cloaks, and UnusedCargo dimensions. Of the
* 24 combinations, only 15 are legal: a 38% savings.
- * * Reduce the size of the Fuel dimension to 3. We only ever look
- * backwards 2 units, so just rotate the logical values through
- * the same 3 physical addresses. This is good for an 82% savings.
+ * * Reduce the size of the Fuel dimension to 3. Explicit iteration
+ * only ever needs to look backwards 2 units, so the logical values
+ * can rotate through the same 3 physical addresses. This would be
+ * good for an 82% savings. Note that explicit iteration went away
+ * in 0372f045.
* * Reduce the size of the Edens dimension from 3 to 2, for the
* same reasons as Fuel above. 33% savings.
* * Buy more ram. (Just sayin'. It's cheaper than you think.)
return 0
}
-func DimensionSizes(data planet_data) []int {
+func DimensionSizes(data planet_data) LogicalIndex {
eden_capacity := data.Commodities["Eden Warp Units"].Limit
if *start_edens > eden_capacity {
eden_capacity = *start_edens
}
cloak_capacity := bint(*cloak)
- dims := make([]int, NumDimensions)
+ dims := make(LogicalIndex, NumDimensions)
dims[Edens] = eden_capacity + 1
dims[Cloaks] = cloak_capacity + 1
dims[UnusedCargo] = eden_capacity + cloak_capacity + 1
return dims
}
-func StateTableSize(dims []int) int {
+type Value int32
+type PhysicalIndex int32
+type LogicalIndex []int
+
+func StateTableSize(dims LogicalIndex) int {
product := 1
for _, size := range dims {
product *= size
}
type State struct {
- value, from int32
+ value Value
+ from PhysicalIndex
}
const (
VALUE_RUBISH
)
-func EncodeIndex(dims, addr []int) int32 {
+func EncodeIndex(dims, addr LogicalIndex) PhysicalIndex {
index := addr[0]
if addr[0] > dims[0] {
panic(0)
}
index = index*dims[i] + addr[i]
}
- return int32(index)
+ return PhysicalIndex(index)
}
-func DecodeIndex(dims []int, index int32) []int {
- addr := make([]int, NumDimensions)
+func DecodeIndex(dims LogicalIndex, index PhysicalIndex) LogicalIndex {
+ scratch := int(index)
+ addr := make(LogicalIndex, NumDimensions)
for i := NumDimensions - 1; i > 0; i-- {
- addr[i] = int(index) % dims[i]
- index /= int32(dims[i])
+ addr[i] = scratch % dims[i]
+ scratch /= dims[i]
}
- addr[0] = int(index)
+ addr[0] = scratch
return addr
}
-func CreateStateTable(data planet_data, dims []int) []State {
+func PlanetIndex(data planet_data, name string) int {
+ index, ok := data.p2i[name]
+ if !ok {
+ panic("Unknown planet " + name)
+ }
+ return index
+}
+
+func CommodityIndex(data planet_data, name string) int {
+ index, ok := data.c2i[name]
+ if !ok {
+ panic("Unknown commodity " + name)
+ }
+ return index
+}
+
+func CreateStateTable(data planet_data, dims LogicalIndex) []State {
table := make([]State, StateTableSize(dims))
for i := range table {
table[i].value = VALUE_UNINITIALIZED
table[i].from = FROM_UNINITIALIZED
}
- addr := make([]int, NumDimensions)
+ addr := make(LogicalIndex, NumDimensions)
addr[Fuel] = *fuel
addr[Edens] = *start_edens
- addr[Location] = data.p2i[*start]
+ addr[Location] = PlanetIndex(data, *start)
if *start_hold != "" {
- addr[Hold] = data.c2i[*start_hold]
+ addr[Hold] = CommodityIndex(data,*start_hold)
}
start_index := EncodeIndex(dims, addr)
- table[start_index].value = int32(*funds)
+ table[start_index].value = Value(*funds)
table[start_index].from = FROM_ROOT
return table
/* CellValue fills in the one cell at address addr by looking at all
* the possible ways to reach this cell and selecting the best one. */
-func Consider(data planet_data, dims []int, table []State, there []int, value_difference int, best_value *int32, best_source []int) {
+func Consider(data planet_data, dims LogicalIndex, table []State, there LogicalIndex, value_difference int, best_value *Value, best_source LogicalIndex) {
there_value := CellValue(data, dims, table, there)
- if value_difference < 0 && int32(-value_difference) > there_value {
+ if value_difference < 0 && Value(-value_difference) > there_value {
/* Can't afford this transition */
return
}
- possible_value := there_value + int32(value_difference)
+ possible_value := there_value + Value(value_difference)
if possible_value > *best_value {
*best_value = possible_value
copy(best_source, there)
var cell_filled_count int
-func CellValue(data planet_data, dims []int, table []State, addr []int) int32 {
+func CellValue(data planet_data, dims LogicalIndex, table []State, addr LogicalIndex) Value {
my_index := EncodeIndex(dims, addr)
if table[my_index].value == VALUE_BEING_EVALUATED {
panic("Circular dependency")
}
table[my_index].value = VALUE_BEING_EVALUATED
- best_value := int32(VALUE_RUBISH)
- best_source := make([]int, NumDimensions)
- other := make([]int, NumDimensions)
+ best_value := Value(VALUE_RUBISH)
+ best_source := make(LogicalIndex, NumDimensions)
+ other := make(LogicalIndex, NumDimensions)
copy(other, addr)
planet := data.i2p[addr[Location]]
if addr[Fuel]+2 < dims[Fuel] {
other[Fuel] = addr[Fuel] + 2
hole_index := (dims[Fuel] - 1) - (addr[Fuel] + 2)
- if hole_index >= len(flight_plan()) || addr[Location] != data.p2i[flight_plan()[hole_index]] {
+ if hole_index >= len(flight_plan()) || addr[Location] != PlanetIndex(data, flight_plan()[hole_index]) {
for other[Location] = 0; other[Location] < dims[Location]; other[Location]++ {
if data.Planets[data.i2p[addr[Location]]].BeaconOn {
Consider(data, dims, table, other, 0, &best_value, best_source)
/* Travel here via a 1-fuel unit jump (a hyper hole) */
if addr[Fuel]+1 < dims[Fuel] {
hole_index := (dims[Fuel] - 1) - (addr[Fuel] + 1)
- if hole_index < len(flight_plan()) && addr[Location] == data.p2i[flight_plan()[hole_index]] {
+ if hole_index < len(flight_plan()) && addr[Location] == PlanetIndex(data, flight_plan()[hole_index]) {
other[Fuel] = addr[Fuel] + 1
for other[Location] = 0; other[Location] < dims[Location]; other[Location]++ {
Consider(data, dims, table, other, 0, &best_value, best_source)
}
/* Visit this planet */
- var i uint
- for i = 0; i < uint(len(visit())); i++ {
+ for i := uint(0); i < uint(len(visit())); i++ {
if addr[Visit]&(1<<i) != 0 && visit()[i] == data.i2p[addr[Location]] {
other[Visit] = addr[Visit] & ^(1 << i)
Consider(data, dims, table, other, 0, &best_value, best_source)
return table[my_index].value
}
-func FindBestState(data planet_data, dims []int, table []State) int32 {
- addr := make([]int, NumDimensions)
+func FinalState(dims LogicalIndex) LogicalIndex {
+ addr := make(LogicalIndex, NumDimensions)
addr[Edens] = *end_edens
addr[Cloaks] = dims[Cloaks] - 1
addr[BuyFighters] = dims[BuyFighters] - 1
addr[Traded] = 1
addr[Hold] = 0
addr[UnusedCargo] = 0
- max_index := int32(-1)
- max_value := int32(0)
+ // Fuel and Location are determined by FindBestState
+ return addr
+}
+
+func FindBestState(data planet_data, dims LogicalIndex, table []State, addr LogicalIndex) PhysicalIndex {
+ max_index := PhysicalIndex(-1)
+ max_value := 0.0
max_fuel := 1
if *fuel == 0 {
max_fuel = 0
}
for addr[Fuel] = 0; addr[Fuel] <= max_fuel; addr[Fuel]++ {
for addr[Location] = 0; addr[Location] < dims[Location]; addr[Location]++ {
- if len(end()) == 0 || end()[data.i2p[addr[Location]]] {
+ planet := data.i2p[addr[Location]]
+ if len(end()) == 0 || end()[planet] {
index := EncodeIndex(dims, addr)
- value := CellValue(data, dims, table, addr)
+ today_value := CellValue(data, dims, table, addr)
+ tomorrow_value := *tomorrow_weight * float64(*hold+data.Planets[planet].TomorrowValue)
+ value := float64(today_value) + tomorrow_value
if value > max_value {
max_value = value
max_index = index
return max_index
}
-func Commas(n int32) (s string) {
+func Commas(n Value) (s string) {
+ if n < 0 {
+ panic(n)
+ }
r := n % 1000
n /= 1000
for n > 0 {
return
}
-func DescribePath(data planet_data, dims []int, table []State, start int32) (description []string) {
+func FighterAndShieldCost(data planet_data, dims LogicalIndex, table []State, best PhysicalIndex) {
+ if *drones == 0 && *batteries == 0 {
+ return
+ }
+ fmt.Println()
+ if *drones > 0 {
+ final_state := FinalState(dims)
+ final_state[BuyFighters] = 0
+ alt_best := FindBestState(data, dims, table, final_state)
+ cost := table[alt_best].value - table[best].value
+ fmt.Println("\rDrones were", float64(cost)/float64(*drones), "each")
+ }
+ if *batteries > 0 {
+ final_state := FinalState(dims)
+ final_state[BuyShields] = 0
+ alt_best := FindBestState(data, dims, table, final_state)
+ cost := table[alt_best].value - table[best].value
+ fmt.Println("\rBatteries were", float64(cost)/float64(*batteries), "each")
+ }
+}
+
+func EndEdensCost(data planet_data, dims LogicalIndex, table []State, best PhysicalIndex) {
+ if *end_edens == 0 {
+ return
+ }
+ fmt.Println()
+ final_state := FinalState(dims)
+ for extra_edens := 1; extra_edens <= *end_edens; extra_edens++ {
+ final_state[Edens] = *end_edens - extra_edens
+ alt_best := FindBestState(data, dims, table, final_state)
+ extra_funds := table[alt_best].value - table[best].value
+ fmt.Println("\rUse", extra_edens, "extra edens, make an extra",
+ Commas(extra_funds), "(",
+ Commas(extra_funds/Value(extra_edens)), "per eden)")
+ }
+}
+
+func VisitCost(data planet_data, dims LogicalIndex, table []State, best PhysicalIndex) {
+ if dims[Visit] == 1 {
+ return
+ }
+ fmt.Println()
+ final_state := FinalState(dims)
+ for i := uint(0); i < uint(len(visit())); i++ {
+ all_bits := dims[Visit] - 1
+ final_state[Visit] = all_bits & ^(1 << i)
+ alt_best := FindBestState(data, dims, table, final_state)
+ cost := table[alt_best].value - table[best].value
+ fmt.Printf("\r%11v Cost to visit %v\n", Commas(cost), visit()[i])
+ }
+}
+
+func EndLocationCost(data planet_data, dims LogicalIndex, table []State, best PhysicalIndex) {
+ if len(end()) == 0 {
+ return
+ }
+ fmt.Println()
+ final_state := FinalState(dims)
+ save_end_string := *end_string
+ *end_string = ""
+ end_cache = nil
+ alt_best := FindBestState(data, dims, table, final_state)
+ cost := table[alt_best].value - table[best].value
+ fmt.Printf("\r%11v Cost of --end %v\n", Commas(cost), save_end_string)
+ *end_string = save_end_string
+}
+
+func DescribePath(data planet_data, dims LogicalIndex, table []State, start PhysicalIndex) (description []string) {
for index := start; table[index].from > FROM_ROOT; index = table[index].from {
if table[index].from == FROM_UNINITIALIZED {
panic(index)
data.c2i, data.i2c = IndexCommodities(&data.Commodities, 1)
dims := DimensionSizes(data)
table := CreateStateTable(data, dims)
- best := FindBestState(data, dims, table)
+ final_state := FinalState(dims)
+ best := FindBestState(data, dims, table, final_state)
print("\n")
if best == -1 {
print("Cannot acheive success criteria\n")
- } else {
- description := DescribePath(data, dims, table, best)
- for i := len(description) - 1; i >= 0; i-- {
- fmt.Println(description[i])
- }
+ return
+ }
+ description := DescribePath(data, dims, table, best)
+ for i := len(description) - 1; i >= 0; i-- {
+ fmt.Println(description[i])
+ }
+
+ if *extra_stats {
+ FighterAndShieldCost(data, dims, table, best)
+ EndEdensCost(data, dims, table, best)
+ VisitCost(data, dims, table, best)
+ EndLocationCost(data, dims, table, best)
}
}