import "flag"
import "fmt"
-import "json"
+import "encoding/json"
import "os"
import "runtime/pprof"
import "strings"
var hold = flag.Int("hold", 300, "Size of your cargo hold")
+var start_hold = flag.String("start_hold", "", "Start with a hold full of cargo")
+
var start_edens = flag.Int("start_edens", 0,
"How many Eden Warp Units are you starting with?")
var visit_string = flag.String("visit", "",
"A comma-separated list of planets to make sure to visit")
-var cpuprofile = flag.String("cpuprofile", "", "write cpu profile to file")
+var tomorrow_weight = flag.Float64("tomorrow_weight", 1.0,
+ "Weight for the expected value of tomorrow's trading. 0.0 - 1.0")
+var cpuprofile = flag.String("cpuprofile", "", "write cpu profile to file")
var visit_cache []string
+
func visit() []string {
if visit_cache == nil {
if *visit_string == "" {
}
var flight_plan_cache []string
+
func flight_plan() []string {
if flight_plan_cache == nil {
if *flight_plan_string == "" {
}
var end_cache map[string]bool
+
func end() map[string]bool {
if end_cache == nil {
if *end_string == "" {
Limit int
}
type Planet struct {
- BeaconOn bool
- Private bool
+ BeaconOn bool
+ Private bool
+ TomorrowValue int
/* Use relative prices rather than absolute prices because you
can get relative prices without traveling to each planet. */
RelativePrices map[string]int
// The official list of dimensions:
const (
// Name Num Size Description
- Edens = iota // 1 3 # of Eden warp units (0 - 2 typically)
- Cloaks // 2 1-2 # of Devices of Cloaking (0 or 1)
- UnusedCargo // 3 4 # of unused cargo spaces (0 - 3 typically)
- Fuel // 4 17 Hyper jump power left (0 - 16)
- Location // 5 26 Location (which planet)
- Hold // 6 15 Cargo bay contents (a *Commodity or nil)
- Traded // 7 2 Traded yet?
- BuyFighters // 8 1-2 Errand: Buy fighter drones
- BuyShields // 9 1-2 Errand: Buy shield batteries
- Visit // 10 1-2**N Visit: Stop by these N planets in the route
+ Edens = iota // 1 3 # of Eden warp units (0 - 2 typically)
+ Cloaks // 2 1-2 # of Devices of Cloaking (0 or 1)
+ UnusedCargo // 3 4 # of unused cargo spaces (0 - 3 typically)
+ Fuel // 4 17 Hyper jump power left (0 - 16)
+ Location // 5 26 Location (which planet)
+ Hold // 6 15 Cargo bay contents (a *Commodity or nil)
+ Traded // 7 2 Traded yet?
+ BuyFighters // 8 1-2 Errand: Buy fighter drones
+ BuyShields // 9 1-2 Errand: Buy shield batteries
+ Visit // 10 1-2**N Visit: Stop by these N planets in the route
NumDimensions
)
value, from int32
}
-const CELL_UNINITIALIZED = -2147483647
-const CELL_BEING_EVALUATED = -2147483646
-const CELL_RUBISH = -2147483645
+const (
+ FROM_ROOT = -2147483647 + iota
+ FROM_UNINITIALIZED
+ VALUE_UNINITIALIZED
+ VALUE_BEING_EVALUATED
+ VALUE_RUBISH
+)
func EncodeIndex(dims, addr []int) int32 {
index := addr[0]
func CreateStateTable(data planet_data, dims []int) []State {
table := make([]State, StateTableSize(dims))
for i := range table {
- table[i].value = CELL_UNINITIALIZED
+ table[i].value = VALUE_UNINITIALIZED
+ table[i].from = FROM_UNINITIALIZED
}
addr := make([]int, NumDimensions)
addr[Fuel] = *fuel
addr[Edens] = *start_edens
addr[Location] = data.p2i[*start]
- addr[Traded] = 1
- table[EncodeIndex(dims, addr)].value = int32(*funds)
+ if *start_hold != "" {
+ addr[Hold] = data.c2i[*start_hold]
+ }
+ start_index := EncodeIndex(dims, addr)
+ table[start_index].value = int32(*funds)
+ table[start_index].from = FROM_ROOT
return table
}
}
var cell_filled_count int
+
func CellValue(data planet_data, dims []int, table []State, addr []int) int32 {
my_index := EncodeIndex(dims, addr)
- if table[my_index].value == CELL_BEING_EVALUATED {
+ if table[my_index].value == VALUE_BEING_EVALUATED {
panic("Circular dependency")
}
- if table[my_index].value != CELL_UNINITIALIZED {
+ if table[my_index].value != VALUE_UNINITIALIZED {
return table[my_index].value
}
- table[my_index].value = CELL_BEING_EVALUATED
+ table[my_index].value = VALUE_BEING_EVALUATED
- best_value := int32(CELL_RUBISH)
+ best_value := int32(VALUE_RUBISH)
best_source := make([]int, NumDimensions)
other := make([]int, NumDimensions)
copy(other, addr)
}
/* Travel here via Eden Warp Unit */
- if addr[Edens]+1 < dims[Edens] && addr[UnusedCargo] > 1 {
+ if addr[Edens]+1 < dims[Edens] && addr[UnusedCargo] > 0 {
_, available := data.Planets[data.i2p[addr[Location]]].RelativePrices["Eden Warp Units"]
if !available {
other[Edens] = addr[Edens] + 1
}
}
}
+ other[Traded] = addr[Traded]
}
/* Buy a Device of Cloaking */
if available {
absolute_price := int(float64(data.Commodities["Fighter Drones"].BasePrice) * float64(relative_price) / 100.0)
other[BuyFighters] = 0
- Consider(data, dims, table, other, -absolute_price * *drones, &best_value, best_source)
+ Consider(data, dims, table, other, -absolute_price**drones, &best_value, best_source)
other[BuyFighters] = addr[BuyFighters]
}
}
if available {
absolute_price := int(float64(data.Commodities["Shield Batterys"].BasePrice) * float64(relative_price) / 100.0)
other[BuyShields] = 0
- Consider(data, dims, table, other, -absolute_price * *batteries, &best_value, best_source)
+ Consider(data, dims, table, other, -absolute_price**batteries, &best_value, best_source)
other[BuyShields] = addr[BuyShields]
}
}
/* Visit this planet */
- var i uint
- for i = 0; i < uint(len(visit())); i++ {
- if addr[Visit] & (1 << i) != 0 && visit()[i] == data.i2p[addr[Location]] {
+ for i := uint(0); i < uint(len(visit())); i++ {
+ if addr[Visit]&(1<<i) != 0 && visit()[i] == data.i2p[addr[Location]] {
other[Visit] = addr[Visit] & ^(1 << i)
Consider(data, dims, table, other, 0, &best_value, best_source)
}
other[UnusedCargo] = addr[UnusedCargo] + quantity
}
if other[UnusedCargo] < dims[UnusedCargo] {
- Consider(data, dims, table, other, -absolute_price * quantity, &best_value, best_source)
+ Consider(data, dims, table, other, -absolute_price*quantity, &best_value, best_source)
}
}
other[Edens] = addr[Edens]
// Sanity check: This cell was in state BEING_EVALUATED
// the whole time that it was being evaluated.
- if table[my_index].value != CELL_BEING_EVALUATED {
+ if table[my_index].value != VALUE_BEING_EVALUATED {
panic(my_index)
}
table[my_index].from = EncodeIndex(dims, best_source)
// UI: Progress bar
- cell_filled_count ++
- if cell_filled_count & 0xff == 0 {
+ cell_filled_count++
+ if cell_filled_count&0xfff == 0 {
print(fmt.Sprintf("\r%3.1f%%", 100*float64(cell_filled_count)/float64(StateTableSize(dims))))
}
return table[my_index].value
}
-func FindBestState(data planet_data, dims []int, table []State) int32 {
+func FinalState(dims []int) []int {
addr := make([]int, NumDimensions)
addr[Edens] = *end_edens
addr[Cloaks] = dims[Cloaks] - 1
addr[Traded] = 1
addr[Hold] = 0
addr[UnusedCargo] = 0
+ // Fuel and Location are determined by FindBestState
+ return addr
+}
+
+func FindBestState(data planet_data, dims []int, table []State, addr []int) int32 {
max_index := int32(-1)
- max_value := int32(0)
+ max_value := 0.0
max_fuel := 1
if *fuel == 0 {
max_fuel = 0
}
for addr[Fuel] = 0; addr[Fuel] <= max_fuel; addr[Fuel]++ {
for addr[Location] = 0; addr[Location] < dims[Location]; addr[Location]++ {
- if len(end()) == 0 || end()[data.i2p[addr[Location]]] {
+ planet := data.i2p[addr[Location]]
+ if len(end()) == 0 || end()[planet] {
index := EncodeIndex(dims, addr)
- value := CellValue(data, dims, table, addr)
+ today_value := CellValue(data, dims, table, addr)
+ tomorrow_value := *tomorrow_weight * float64(*hold+data.Planets[planet].TomorrowValue)
+ value := float64(today_value) + tomorrow_value
if value > max_value {
max_value = value
max_index = index
}
func Commas(n int32) (s string) {
+ if n < 0 {
+ panic(n)
+ }
r := n % 1000
n /= 1000
for n > 0 {
}
func DescribePath(data planet_data, dims []int, table []State, start int32) (description []string) {
- for index := start; index > 0 && table[index].from > 0; index = table[index].from {
+ for index := start; table[index].from > FROM_ROOT; index = table[index].from {
+ if table[index].from == FROM_UNINITIALIZED {
+ panic(index)
+ }
var line string
addr := DecodeIndex(dims, index)
prev := DecodeIndex(dims, table[index].from)
to := data.i2p[addr[Location]]
line += fmt.Sprintf("Jump from %v to %v (%v hyper jump units)", from, to, prev[Fuel]-addr[Fuel])
}
- if addr[Edens] == prev[Edens] - 1 {
+ if addr[Edens] == prev[Edens]-1 {
from := data.i2p[prev[Location]]
to := data.i2p[addr[Location]]
line += fmt.Sprintf("Eden warp from %v to %v", from, to)
line += "Buy a Cloak"
}
if addr[Edens] > prev[Edens] {
- line += fmt.Sprint("Buy ", addr[Edens] - prev[Edens], " Eden Warp Units")
+ line += fmt.Sprint("Buy ", addr[Edens]-prev[Edens], " Eden Warp Units")
}
if addr[BuyShields] == 1 && prev[BuyShields] == 0 {
line += fmt.Sprint("Buy ", *batteries, " Shield Batterys")
if line == "" {
line = fmt.Sprint(prev, " -> ", addr)
}
- description = append(description, fmt.Sprintf("%13v ", Commas(table[index].value)) + line)
+ description = append(description, fmt.Sprintf("%13v ", Commas(table[index].value))+line)
}
return
}
func main() {
flag.Parse()
+ if *start == "" || *funds == 0 {
+ print("--start and --funds are required. --help for more\n")
+ return
+ }
if *cpuprofile != "" {
f, err := os.Create(*cpuprofile)
if err != nil {
data.c2i, data.i2c = IndexCommodities(&data.Commodities, 1)
dims := DimensionSizes(data)
table := CreateStateTable(data, dims)
- best := FindBestState(data, dims, table)
+ final_state := FinalState(dims)
+ best := FindBestState(data, dims, table, final_state)
print("\n")
if best == -1 {
print("Cannot acheive success criteria\n")
- } else {
- description := DescribePath(data, dims, table, best)
- for i := len(description) - 1; i >= 0; i-- {
- fmt.Println(description[i])
- }
+ return
+ }
+ description := DescribePath(data, dims, table, best)
+ for i := len(description) - 1; i >= 0; i-- {
+ fmt.Println(description[i])
+ }
+
+ // Ok, that was the important stuff. Now some fun stuff.
+
+ // Calculate total cost of fighters and shields
+ if *drones > 0 || *batteries > 0 {
+ fmt.Println()
+ }
+ if *drones > 0 {
+ final_state[BuyFighters] = 0
+ alt_best := FindBestState(data, dims, table, final_state)
+ cost := table[alt_best].value - table[best].value
+ fmt.Println("\rDrones were", float64(cost)/float64(*drones), "each")
+ final_state[BuyFighters] = 1
}
+ if *batteries > 0 {
+ final_state[BuyShields] = 0
+ alt_best := FindBestState(data, dims, table, final_state)
+ cost := table[alt_best].value - table[best].value
+ fmt.Println("\rBatteries were", float64(cost)/float64(*batteries), "each")
+ final_state[BuyShields] = 1
+ }
+
+ // Use extra eden warps
+ if *end_edens > 0 {
+ fmt.Println()
+ }
+ for extra_edens := 1; extra_edens <= *end_edens; extra_edens++ {
+ final_state[Edens] = *end_edens - extra_edens
+ alt_best := FindBestState(data, dims, table, final_state)
+ extra_funds := table[alt_best].value - table[best].value
+ fmt.Println("\rUse", extra_edens, "extra edens, make an extra",
+ Commas(extra_funds), "(",
+ Commas(extra_funds/int32(extra_edens)), "per eden)")
+ }
+ final_state[Edens] = *end_edens
+
+ // Cost of visiting places
+ if dims[Visit] > 1 {
+ fmt.Println()
+ }
+ for i := uint(0); i < uint(len(visit())); i++ {
+ all_bits := dims[Visit] - 1
+ final_state[Visit] = all_bits & ^(1 << i)
+ alt_best := FindBestState(data, dims, table, final_state)
+ cost := table[alt_best].value - table[best].value
+ fmt.Printf("\r%11v Cost to visit %v\n", Commas(cost), visit()[i])
+ }
+ final_state[Visit] = dims[Visit] - 1
+
}