import "flag"
import "fmt"
-import "json"
+import "encoding/json"
import "os"
import "runtime/pprof"
import "strings"
var tomorrow_weight = flag.Float64("tomorrow_weight", 1.0,
"Weight for the expected value of tomorrow's trading. 0.0 - 1.0")
+var extra_stats = flag.Bool("extra_stats", true,
+ "Show additional information of possible interest")
+
var cpuprofile = flag.String("cpuprofile", "", "write cpu profile to file")
var visit_cache []string
* independent -- some combinations are illegal and not used. They are
* handled as three dimensions rather than one for simplicity. Placing
* these dimensions first causes the unused cells in the table to be
- * grouped together in large blocks. This keeps them from polluting
- * cache lines, and if they are large enough, allows the memory manager
- * to swap out entire pages.
+ * grouped together in large blocks. This keeps the unused cells from
+ * polluting cache lines, and if the spans of unused cells are large
+ * enough, allows the memory manager to swap out entire pages.
*
* If the table gets too big to fit in RAM:
* * Combine the Edens, Cloaks, and UnusedCargo dimensions. Of the
* 24 combinations, only 15 are legal: a 38% savings.
- * * Reduce the size of the Fuel dimension to 3. We only ever look
- * backwards 2 units, so just rotate the logical values through
- * the same 3 physical addresses. This is good for an 82% savings.
+ * * Reduce the size of the Fuel dimension to 3. Explicit iteration
+ * only ever needs to look backwards 2 units, so the logical values
+ * can rotate through the same 3 physical addresses. This would be
+ * good for an 82% savings. Note that explicit iteration went away
+ * in 0372f045.
* * Reduce the size of the Edens dimension from 3 to 2, for the
* same reasons as Fuel above. 33% savings.
* * Buy more ram. (Just sayin'. It's cheaper than you think.)
}
/* Visit this planet */
- var i uint
- for i = 0; i < uint(len(visit())); i++ {
+ for i := uint(0); i < uint(len(visit())); i++ {
if addr[Visit]&(1<<i) != 0 && visit()[i] == data.i2p[addr[Location]] {
other[Visit] = addr[Visit] & ^(1 << i)
Consider(data, dims, table, other, 0, &best_value, best_source)
return table[my_index].value
}
-func FindBestState(data planet_data, dims []int, table []State) int32 {
+func FinalState(dims []int) []int {
addr := make([]int, NumDimensions)
addr[Edens] = *end_edens
addr[Cloaks] = dims[Cloaks] - 1
addr[Traded] = 1
addr[Hold] = 0
addr[UnusedCargo] = 0
+ // Fuel and Location are determined by FindBestState
+ return addr
+}
+
+func FindBestState(data planet_data, dims []int, table []State, addr []int) int32 {
max_index := int32(-1)
max_value := 0.0
max_fuel := 1
}
func Commas(n int32) (s string) {
+ if n < 0 {
+ panic(n)
+ }
r := n % 1000
n /= 1000
for n > 0 {
return
}
+func FighterAndShieldCost(data planet_data, dims []int, table []State, best int32) {
+ if *drones == 0 && *batteries == 0 {
+ return
+ }
+ fmt.Println()
+ if *drones > 0 {
+ final_state := FinalState(dims)
+ final_state[BuyFighters] = 0
+ alt_best := FindBestState(data, dims, table, final_state)
+ cost := table[alt_best].value - table[best].value
+ fmt.Println("\rDrones were", float64(cost)/float64(*drones), "each")
+ }
+ if *batteries > 0 {
+ final_state := FinalState(dims)
+ final_state[BuyShields] = 0
+ alt_best := FindBestState(data, dims, table, final_state)
+ cost := table[alt_best].value - table[best].value
+ fmt.Println("\rBatteries were", float64(cost)/float64(*batteries), "each")
+ }
+}
+
+func EndEdensCost(data planet_data, dims []int, table []State, best int32) {
+ if *end_edens == 0 {
+ return
+ }
+ fmt.Println()
+ final_state := FinalState(dims)
+ for extra_edens := 1; extra_edens <= *end_edens; extra_edens++ {
+ final_state[Edens] = *end_edens - extra_edens
+ alt_best := FindBestState(data, dims, table, final_state)
+ extra_funds := table[alt_best].value - table[best].value
+ fmt.Println("\rUse", extra_edens, "extra edens, make an extra",
+ Commas(extra_funds), "(",
+ Commas(extra_funds/int32(extra_edens)), "per eden)")
+ }
+}
+
+func VisitCost(data planet_data, dims []int, table []State, best int32) {
+ if dims[Visit] == 1 {
+ return
+ }
+ fmt.Println()
+ final_state := FinalState(dims)
+ for i := uint(0); i < uint(len(visit())); i++ {
+ all_bits := dims[Visit] - 1
+ final_state[Visit] = all_bits & ^(1 << i)
+ alt_best := FindBestState(data, dims, table, final_state)
+ cost := table[alt_best].value - table[best].value
+ fmt.Printf("\r%11v Cost to visit %v\n", Commas(cost), visit()[i])
+ }
+}
+
+func EndLocationCost(data planet_data, dims []int, table []State, best int32) {
+ if len(end()) == 0 {
+ return
+ }
+ fmt.Println()
+ final_state := FinalState(dims)
+ save_end_string := *end_string
+ *end_string = ""
+ end_cache = nil
+ alt_best := FindBestState(data, dims, table, final_state)
+ cost := table[alt_best].value - table[best].value
+ fmt.Printf("\r%11v Cost of --end %v\n", Commas(cost), save_end_string)
+ *end_string = save_end_string
+}
+
func DescribePath(data planet_data, dims []int, table []State, start int32) (description []string) {
for index := start; table[index].from > FROM_ROOT; index = table[index].from {
if table[index].from == FROM_UNINITIALIZED {
data.c2i, data.i2c = IndexCommodities(&data.Commodities, 1)
dims := DimensionSizes(data)
table := CreateStateTable(data, dims)
- best := FindBestState(data, dims, table)
+ final_state := FinalState(dims)
+ best := FindBestState(data, dims, table, final_state)
print("\n")
if best == -1 {
print("Cannot acheive success criteria\n")
- } else {
- description := DescribePath(data, dims, table, best)
- for i := len(description) - 1; i >= 0; i-- {
- fmt.Println(description[i])
- }
+ return
+ }
+ description := DescribePath(data, dims, table, best)
+ for i := len(description) - 1; i >= 0; i-- {
+ fmt.Println(description[i])
+ }
+
+ if *extra_stats {
+ FighterAndShieldCost(data, dims, table, best)
+ EndEdensCost(data, dims, table, best)
+ VisitCost(data, dims, table, best)
+ EndLocationCost(data, dims, table, best)
}
}