import "fmt"
import "json"
import "os"
+import "runtime/pprof"
import "strings"
+var funds = flag.Int("funds", 0,
+ "Starting funds")
+
var start = flag.String("start", "",
"The planet to start at")
-var flight_plan = flag.String("flight_plan", "",
- "Your hidey-holes for the day, comma-separated.")
+var flight_plan_string = flag.String("flight_plan", "",
+ "Your hyper-holes for the day, comma-separated.")
-var end = flag.String("end", "",
+var end_string = flag.String("end", "",
"A comma-separated list of acceptable ending planets.")
var planet_data_file = flag.String("planet_data_file", "planet-data",
"The file to read planet data from")
-var fuel = flag.Int("fuel", 16, "Reactor units")
+var fuel = flag.Int("fuel", 16, "Hyper Jump power left")
var hold = flag.Int("hold", 300, "Size of your cargo hold")
var batteries = flag.Int("batteries", 0, "Buy this many Shield Batterys")
+var drone_price = flag.Int("drone_price", 0, "Today's Fighter Drone price")
+
+var battery_price = flag.Int("battery_price", 0, "Today's Shield Battery price")
+
var visit_string = flag.String("visit", "",
"A comma-separated list of planets to make sure to visit")
+var cpuprofile = flag.String("cpuprofile", "", "write cpu profile to file")
+
+var visit_cache []string
+
func visit() []string {
- return strings.Split(*visit_string, ",")
+ if visit_cache == nil {
+ if *visit_string == "" {
+ return nil
+ }
+ visit_cache = strings.Split(*visit_string, ",")
+ }
+ return visit_cache
+}
+
+var flight_plan_cache []string
+
+func flight_plan() []string {
+ if flight_plan_cache == nil {
+ if *flight_plan_string == "" {
+ return nil
+ }
+ flight_plan_cache = strings.Split(*flight_plan_string, ",")
+ }
+ return flight_plan_cache
+}
+
+var end_cache map[string]bool
+
+func end() map[string]bool {
+ if end_cache == nil {
+ if *end_string == "" {
+ return nil
+ }
+ m := make(map[string]bool)
+ for _, p := range strings.Split(*end_string, ",") {
+ m[p] = true
+ }
+ end_cache = m
+ }
+ return end_cache
}
type Commodity struct {
}
type Planet struct {
BeaconOn bool
+ Private bool
/* Use relative prices rather than absolute prices because you
can get relative prices without traveling to each planet. */
RelativePrices map[string]int
* handled as three dimensions rather than one for simplicity. Placing
* these dimensions first causes the unused cells in the table to be
* grouped together in large blocks. This keeps them from polluting
- * cache lines, and if they are large enough, prevent the memory manager
- * from allocating pages for these areas at all.
+ * cache lines, and if they are large enough, allows the memory manager
+ * to swap out entire pages.
+ *
+ * If the table gets too big to fit in RAM:
+ * * Combine the Edens, Cloaks, and UnusedCargo dimensions. Of the
+ * 24 combinations, only 15 are legal: a 38% savings.
+ * * Reduce the size of the Fuel dimension to 3. We only ever look
+ * backwards 2 units, so just rotate the logical values through
+ * the same 3 physical addresses. This is good for an 82% savings.
+ * * Reduce the size of the Edens dimension from 3 to 2, for the
+ * same reasons as Fuel above. 33% savings.
+ * * Buy more ram. (Just sayin'. It's cheaper than you think.)
+ *
*/
// The official list of dimensions:
const (
- // Name Num Size Description
- Edens = iota // 1 3 # of Eden warp units (0 - 2 typically)
- Cloaks // 2 2 # of Devices of Cloaking (0 or 1)
- UnusedCargo // 3 4 # of unused cargo spaces (0 - 3 typically)
- Fuel // 4 17 Reactor power left (0 - 16)
- Location // 5 26 Location (which planet)
- Hold // 6 15 Cargo bay contents (a *Commodity or nil)
- NeedFighters // 7 2 Errand: Buy fighter drones (needed or not)
- NeedShields // 8 2 Errand: Buy shield batteries (needed or not)
- Visit // 9 2**N Visit: Stop by these N planets in the route
+ // Name Num Size Description
+ Edens = iota // 1 3 # of Eden warp units (0 - 2 typically)
+ Cloaks // 2 1-2 # of Devices of Cloaking (0 or 1)
+ UnusedCargo // 3 4 # of unused cargo spaces (0 - 3 typically)
+ Fuel // 4 17 Hyper jump power left (0 - 16)
+ Location // 5 26 Location (which planet)
+ Hold // 6 15 Cargo bay contents (a *Commodity or nil)
+ Traded // 7 2 Traded yet?
+ BuyFighters // 8 1-2 Errand: Buy fighter drones
+ BuyShields // 9 1-2 Errand: Buy shield batteries
+ Visit // 10 1-2**N Visit: Stop by these N planets in the route
NumDimensions
)
func DimensionSizes(data planet_data) []int {
eden_capacity := data.Commodities["Eden Warp Units"].Limit
+ if *start_edens > eden_capacity {
+ eden_capacity = *start_edens
+ }
cloak_capacity := bint(*cloak)
dims := make([]int, NumDimensions)
dims[Edens] = eden_capacity + 1
dims[UnusedCargo] = eden_capacity + cloak_capacity + 1
dims[Fuel] = *fuel + 1
dims[Location] = len(data.Planets)
- dims[Hold] = len(data.Commodities)
- dims[NeedFighters] = bint(*drones > 0) + 1
- dims[NeedShields] = bint(*batteries > 0) + 1
+ dims[Hold] = len(data.Commodities) + 1
+ dims[Traded] = 2
+ dims[BuyFighters] = bint(*drones > 0) + 1
+ dims[BuyShields] = bint(*batteries > 0) + 1
dims[Visit] = 1 << uint(len(visit()))
// Remind myself to add a line above when adding new dimensions
}
func StateTableSize(dims []int) int {
- sum := 0
+ product := 1
for _, size := range dims {
- sum += size
+ product *= size
}
- return sum
+ return product
}
type State struct {
- value, from int
+ value, from int32
}
-func EncodeIndex(dims, addr []int) int {
+const (
+ CELL_UNINITIALIZED = -2147483647 + iota
+ CELL_BEING_EVALUATED
+ CELL_RUBISH
+)
+
+func EncodeIndex(dims, addr []int) int32 {
index := addr[0]
- for i := 1; i < len(dims); i++ {
+ if addr[0] > dims[0] {
+ panic(0)
+ }
+ for i := 1; i < NumDimensions; i++ {
+ if addr[i] < 0 || addr[i] >= dims[i] {
+ panic(i)
+ }
index = index*dims[i] + addr[i]
}
- return index
+ return int32(index)
}
-func DecodeIndex(dims []int, index int) []int {
- addr := make([]int, len(dims))
- for i := len(dims) - 1; i > 0; i-- {
- addr[i] = index % dims[i]
- index /= dims[i]
+func DecodeIndex(dims []int, index int32) []int {
+ addr := make([]int, NumDimensions)
+ for i := NumDimensions - 1; i > 0; i-- {
+ addr[i] = int(index) % dims[i]
+ index /= int32(dims[i])
}
- addr[0] = index
+ addr[0] = int(index)
return addr
}
-/* Fill in the cell at address addr by looking at all the possible ways
- * to reach this cell and selecting the best one.
- *
- * The other obvious implementation choice is to do this the other way
- * around -- for each cell, conditionally overwrite all the other cells
- * that are reachable *from* the considered cell. We choose gathering
- * reads over scattering writes to avoid having to take a bunch of locks.
- *
- * The order that we check things here matters only for value ties. We
- * keep the first best path. So when action order doesn't matter, the
- * check that is performed first here will appear in the output first.
- */
-func FillStateTableCell(data planet_data, dims []int, table []State, addr []int) {
- /* Travel here via jumping */
- /* Travel here via Eden Warp Unit */
- /* Silly: Dump Eden warp units */
- /* Buy Eden warp units */
+func CreateStateTable(data planet_data, dims []int) []State {
+ table := make([]State, StateTableSize(dims))
+ for i := range table {
+ table[i].value = CELL_UNINITIALIZED
+ }
+
+ addr := make([]int, NumDimensions)
+ addr[Fuel] = *fuel
+ addr[Edens] = *start_edens
+ addr[Location] = data.p2i[*start]
+ addr[Traded] = 1
+ table[EncodeIndex(dims, addr)].value = int32(*funds)
+
+ return table
+}
+
+/* CellValue fills in the one cell at address addr by looking at all
+ * the possible ways to reach this cell and selecting the best one. */
+
+func Consider(data planet_data, dims []int, table []State, there []int, value_difference int, best_value *int32, best_source []int) {
+ there_value := CellValue(data, dims, table, there)
+ if value_difference < 0 && int32(-value_difference) > there_value {
+ /* Can't afford this transition */
+ return
+ }
+ possible_value := there_value + int32(value_difference)
+ if possible_value > *best_value {
+ *best_value = possible_value
+ copy(best_source, there)
+ }
+}
+
+var cell_filled_count int
+
+func CellValue(data planet_data, dims []int, table []State, addr []int) int32 {
+ my_index := EncodeIndex(dims, addr)
+ if table[my_index].value == CELL_BEING_EVALUATED {
+ panic("Circular dependency")
+ }
+ if table[my_index].value != CELL_UNINITIALIZED {
+ return table[my_index].value
+ }
+ table[my_index].value = CELL_BEING_EVALUATED
+
+ best_value := int32(CELL_RUBISH)
+ best_source := make([]int, NumDimensions)
+ other := make([]int, NumDimensions)
+ copy(other, addr)
+ planet := data.i2p[addr[Location]]
+
+ /* Travel here */
+ if addr[Traded] == 0 { /* Can't have traded immediately after traveling. */
+ other[Traded] = 1 /* Travel from states that have done trading. */
+
+ /* Travel here via a 2-fuel unit jump */
+ if addr[Fuel]+2 < dims[Fuel] {
+ other[Fuel] = addr[Fuel] + 2
+ hole_index := (dims[Fuel] - 1) - (addr[Fuel] + 2)
+ if hole_index >= len(flight_plan()) || addr[Location] != data.p2i[flight_plan()[hole_index]] {
+ for other[Location] = 0; other[Location] < dims[Location]; other[Location]++ {
+ if data.Planets[data.i2p[addr[Location]]].BeaconOn {
+ Consider(data, dims, table, other, 0, &best_value, best_source)
+ }
+ }
+ }
+ other[Location] = addr[Location]
+ other[Fuel] = addr[Fuel]
+ }
+
+ /* Travel here via a 1-fuel unit jump (a hyper hole) */
+ if addr[Fuel]+1 < dims[Fuel] {
+ hole_index := (dims[Fuel] - 1) - (addr[Fuel] + 1)
+ if hole_index < len(flight_plan()) && addr[Location] == data.p2i[flight_plan()[hole_index]] {
+ other[Fuel] = addr[Fuel] + 1
+ for other[Location] = 0; other[Location] < dims[Location]; other[Location]++ {
+ Consider(data, dims, table, other, 0, &best_value, best_source)
+ }
+ other[Location] = addr[Location]
+ other[Fuel] = addr[Fuel]
+ }
+ }
+
+ /* Travel here via Eden Warp Unit */
+ if addr[Edens]+1 < dims[Edens] && addr[UnusedCargo] > 0 {
+ _, available := data.Planets[data.i2p[addr[Location]]].RelativePrices["Eden Warp Units"]
+ if !available {
+ other[Edens] = addr[Edens] + 1
+ if other[Hold] != 0 {
+ other[UnusedCargo] = addr[UnusedCargo] - 1
+ }
+ for other[Location] = 0; other[Location] < dims[Location]; other[Location]++ {
+ Consider(data, dims, table, other, 0, &best_value, best_source)
+ }
+ other[Location] = addr[Location]
+ other[UnusedCargo] = addr[UnusedCargo]
+ other[Edens] = addr[Edens]
+ }
+ }
+ other[Traded] = addr[Traded]
+ }
+
+ /* Trade */
+ if addr[Traded] == 1 {
+ other[Traded] = 0
+
+ /* Consider not trading */
+ Consider(data, dims, table, other, 0, &best_value, best_source)
+
+ if !data.Planets[data.i2p[addr[Location]]].Private {
+
+ /* Sell */
+ if addr[Hold] == 0 && addr[UnusedCargo] == 0 {
+ for other[Hold] = 0; other[Hold] < dims[Hold]; other[Hold]++ {
+ commodity := data.i2c[other[Hold]]
+ if !data.Commodities[commodity].CanSell {
+ continue
+ }
+ relative_price, available := data.Planets[planet].RelativePrices[commodity]
+ if !available {
+ // TODO: Dump cargo
+ continue
+ }
+ base_price := data.Commodities[commodity].BasePrice
+ absolute_price := float64(base_price) * float64(relative_price) / 100.0
+ sell_price := int(absolute_price * 0.9)
+
+ for other[UnusedCargo] = 0; other[UnusedCargo] < dims[UnusedCargo]; other[UnusedCargo]++ {
+ quantity := *hold - (other[UnusedCargo] + other[Cloaks] + other[Edens])
+ sale_value := quantity * sell_price
+ Consider(data, dims, table, other, sale_value, &best_value, best_source)
+ }
+ }
+ other[UnusedCargo] = addr[UnusedCargo]
+ other[Hold] = addr[Hold]
+ }
+
+ /* Buy */
+ other[Traded] = addr[Traded] /* Buy after selling */
+ if addr[Hold] != 0 {
+ commodity := data.i2c[addr[Hold]]
+ if data.Commodities[commodity].CanSell {
+ relative_price, available := data.Planets[planet].RelativePrices[commodity]
+ if available {
+ base_price := data.Commodities[commodity].BasePrice
+ absolute_price := int(float64(base_price) * float64(relative_price) / 100.0)
+ quantity := *hold - (addr[UnusedCargo] + addr[Cloaks] + addr[Edens])
+ total_price := quantity * absolute_price
+ other[Hold] = 0
+ other[UnusedCargo] = 0
+ Consider(data, dims, table, other, -total_price, &best_value, best_source)
+ other[UnusedCargo] = addr[UnusedCargo]
+ other[Hold] = addr[Hold]
+ }
+ }
+ }
+ }
+ other[Traded] = addr[Traded]
+ }
+
/* Buy a Device of Cloaking */
- /* Silly: Dump a Device of Cloaking */
+ if addr[Cloaks] == 1 && addr[UnusedCargo] < dims[UnusedCargo]-1 {
+ relative_price, available := data.Planets[data.i2p[addr[Location]]].RelativePrices["Device Of Cloakings"]
+ if available {
+ absolute_price := int(float64(data.Commodities["Device Of Cloakings"].BasePrice) * float64(relative_price) / 100.0)
+ other[Cloaks] = 0
+ if other[Hold] != 0 {
+ other[UnusedCargo] = addr[UnusedCargo] + 1
+ }
+ Consider(data, dims, table, other, -absolute_price, &best_value, best_source)
+ other[UnusedCargo] = addr[UnusedCargo]
+ other[Cloaks] = addr[Cloaks]
+ }
+ }
+
/* Buy Fighter Drones */
+ if addr[BuyFighters] == 1 {
+ relative_price, available := data.Planets[data.i2p[addr[Location]]].RelativePrices["Fighter Drones"]
+ if available {
+ absolute_price := int(float64(data.Commodities["Fighter Drones"].BasePrice) * float64(relative_price) / 100.0)
+ other[BuyFighters] = 0
+ Consider(data, dims, table, other, -absolute_price**drones, &best_value, best_source)
+ other[BuyFighters] = addr[BuyFighters]
+ }
+ }
+
/* Buy Shield Batteries */
- if addr[Hold] == 0 {
- /* Sell or dump things */
- for commodity := range data.Commodities {
+ if addr[BuyShields] == 1 {
+ relative_price, available := data.Planets[data.i2p[addr[Location]]].RelativePrices["Shield Batterys"]
+ if available {
+ absolute_price := int(float64(data.Commodities["Shield Batterys"].BasePrice) * float64(relative_price) / 100.0)
+ other[BuyShields] = 0
+ Consider(data, dims, table, other, -absolute_price**batteries, &best_value, best_source)
+ other[BuyShields] = addr[BuyShields]
}
- } else {
- /* Buy this thing */
}
+
/* Visit this planet */
-}
+ var i uint
+ for i = 0; i < uint(len(visit())); i++ {
+ if addr[Visit]&(1<<i) != 0 && visit()[i] == data.i2p[addr[Location]] {
+ other[Visit] = addr[Visit] & ^(1 << i)
+ Consider(data, dims, table, other, 0, &best_value, best_source)
+ }
+ }
+ other[Visit] = addr[Visit]
-func FillStateTable2(data planet_data, dims []int, table []State,
-fuel_remaining, edens_remaining int, planet string, barrier chan<- bool) {
- /* The dimension nesting order up to this point is important.
- * Beyond this point, it's not important.
- *
- * It is very important when iterating through the Hold dimension
- * to visit the null commodity (empty hold) first. Visiting the
- * null commodity represents selling. Visiting it first gets the
- * action order correct: arrive, sell, buy, leave. Visiting the
- * null commodity after another commodity would evaluate the action
- * sequence: arrive, buy, sell, leave. This is a useless action
- * sequence. Because we visit the null commodity first, we do not
- * consider these action sequences.
- */
- eden_capacity := data.Commodities["Eden Warp Units"].Limit
- addr := make([]int, len(dims))
- addr[Edens] = edens_remaining
- addr[Fuel] = fuel_remaining
- addr[Location] = data.p2i[planet]
- for addr[Hold] = 0; addr[Hold] < dims[Hold]; addr[Hold]++ {
- for addr[Cloaks] = 0; addr[Cloaks] < dims[Cloaks]; addr[Cloaks]++ {
- for addr[UnusedCargo] = 0; addr[UnusedCargo] < dims[UnusedCargo]; addr[UnusedCargo]++ {
- if addr[Edens]+addr[Cloaks]+addr[UnusedCargo] <=
- eden_capacity+1 {
- for addr[NeedFighters] = 0; addr[NeedFighters] < dims[NeedFighters]; addr[NeedFighters]++ {
- for addr[NeedShields] = 0; addr[NeedShields] < dims[NeedShields]; addr[NeedShields]++ {
- for addr[Visit] = 0; addr[Visit] < dims[Visit]; addr[Visit]++ {
- FillStateTableCell(data, dims, table, addr)
- }
- }
- }
+ /* Buy Eden warp units */
+ eden_limit := data.Commodities["Eden Warp Units"].Limit
+ if addr[Edens] > 0 && addr[Edens] <= eden_limit {
+ relative_price, available := data.Planets[data.i2p[addr[Location]]].RelativePrices["Eden Warp Units"]
+ if available {
+ absolute_price := int(float64(data.Commodities["Eden Warp Units"].BasePrice) * float64(relative_price) / 100.0)
+ for quantity := addr[Edens]; quantity > 0; quantity-- {
+ other[Edens] = addr[Edens] - quantity
+ if addr[Hold] != 0 {
+ other[UnusedCargo] = addr[UnusedCargo] + quantity
+ }
+ if other[UnusedCargo] < dims[UnusedCargo] {
+ Consider(data, dims, table, other, -absolute_price*quantity, &best_value, best_source)
}
}
+ other[Edens] = addr[Edens]
+ other[UnusedCargo] = addr[UnusedCargo]
}
}
- barrier <- true
+
+ // Check that we didn't lose track of any temporary modifications to other.
+ for i := 0; i < NumDimensions; i++ {
+ if addr[i] != other[i] {
+ panic(i)
+ }
+ }
+
+ // Sanity check: This cell was in state BEING_EVALUATED
+ // the whole time that it was being evaluated.
+ if table[my_index].value != CELL_BEING_EVALUATED {
+ panic(my_index)
+ }
+
+ // Record our findings
+ table[my_index].value = best_value
+ table[my_index].from = EncodeIndex(dims, best_source)
+
+ // UI: Progress bar
+ cell_filled_count++
+ if cell_filled_count&0xff == 0 {
+ print(fmt.Sprintf("\r%3.1f%%", 100*float64(cell_filled_count)/float64(StateTableSize(dims))))
+ }
+
+ return table[my_index].value
}
-/* Filling the state table is a set of nested for loops NumDimensions deep.
- * We split this into two procedures: 1 and 2. #1 is the outer, slowest-
- * changing indexes. #1 fires off many calls to #2 that run in parallel.
- * The order of the nesting of the dimensions, the order of iteration within
- * each dimension, and where the 1 / 2 split is placed are carefully chosen
- * to make this arrangement safe.
- *
- * Outermost two layers: Go from high-energy states (lots of fuel, edens) to
- * low-energy state. These must be processed sequentially and in this order
- * because you travel through high-energy states to get to the low-energy
- * states.
- *
- * Third layer: Planet. This is a good layer to parallelize on. There's
- * high enough cardinality that we don't have to mess with parallelizing
- * multiple layers for good utilization (on 2011 machines). Each thread
- * works on one planet's states and need not synchronize with peer threads.
- */
-func FillStateTable1(data planet_data, dims []int) []State {
- table := make([]State, StateTableSize(dims))
- barrier := make(chan bool, len(data.Planets))
- eden_capacity := data.Commodities["Eden Warp Units"].Limit
- work_units := (float64(*fuel) + 1) * (float64(eden_capacity) + 1)
- work_done := 0.0
- for fuel_remaining := *fuel; fuel_remaining >= 0; fuel_remaining-- {
- for edens_remaining := eden_capacity; edens_remaining >= 0; edens_remaining-- {
- for planet := range data.Planets {
- go FillStateTable2(data, dims, table, fuel_remaining,
- edens_remaining, planet, barrier)
- }
- for _ = range data.Planets {
- <-barrier
+func FindBestState(data planet_data, dims []int, table []State) int32 {
+ addr := make([]int, NumDimensions)
+ addr[Edens] = *end_edens
+ addr[Cloaks] = dims[Cloaks] - 1
+ addr[BuyFighters] = dims[BuyFighters] - 1
+ addr[BuyShields] = dims[BuyShields] - 1
+ addr[Visit] = dims[Visit] - 1
+ addr[Traded] = 1
+ addr[Hold] = 0
+ addr[UnusedCargo] = 0
+ max_index := int32(-1)
+ max_value := int32(0)
+ max_fuel := 1
+ if *fuel == 0 {
+ max_fuel = 0
+ }
+ for addr[Fuel] = 0; addr[Fuel] <= max_fuel; addr[Fuel]++ {
+ for addr[Location] = 0; addr[Location] < dims[Location]; addr[Location]++ {
+ if len(end()) == 0 || end()[data.i2p[addr[Location]]] {
+ index := EncodeIndex(dims, addr)
+ value := CellValue(data, dims, table, addr)
+ if value > max_value {
+ max_value = value
+ max_index = index
+ }
}
- work_done++
- fmt.Printf("\r%3.0f%%", 100*work_done/work_units)
}
}
- return table
+ return max_index
}
-/* What is the value of hauling 'commodity' from 'from' to 'to'?
- * Take into account the available funds and the available cargo space. */
-func TradeValue(data planet_data,
-from, to Planet,
-commodity string,
-initial_funds, max_quantity int) int {
- if !data.Commodities[commodity].CanSell {
- return 0
- }
- from_relative_price, from_available := from.RelativePrices[commodity]
- if !from_available {
- return 0
- }
- to_relative_price, to_available := to.RelativePrices[commodity]
- if !to_available {
- return 0
- }
-
- base_price := data.Commodities[commodity].BasePrice
- from_absolute_price := from_relative_price * base_price
- to_absolute_price := to_relative_price * base_price
- buy_price := from_absolute_price
- sell_price := int(float64(to_absolute_price) * 0.9)
- var can_afford int = initial_funds / buy_price
- quantity := can_afford
- if quantity > max_quantity {
- quantity = max_quantity
- }
- return (sell_price - buy_price) * max_quantity
+func Commas(n int32) (s string) {
+ r := n % 1000
+ n /= 1000
+ for n > 0 {
+ s = fmt.Sprintf(",%03d", r) + s
+ r = n % 1000
+ n /= 1000
+ }
+ s = fmt.Sprint(r) + s
+ return
}
-func FindBestTrades(data planet_data) [][]string {
- // TODO: We can't cache this because this can change based on available funds.
- best := make([][]string, len(data.Planets))
- for from := range data.Planets {
- best[data.p2i[from]] = make([]string, len(data.Planets))
- for to := range data.Planets {
- best_gain := 0
- price_list := data.Planets[from].RelativePrices
- if len(data.Planets[to].RelativePrices) < len(data.Planets[from].RelativePrices) {
- price_list = data.Planets[to].RelativePrices
- }
- for commodity := range price_list {
- gain := TradeValue(data,
- data.Planets[from],
- data.Planets[to],
- commodity,
- 10000000,
- 1)
- if gain > best_gain {
- best[data.p2i[from]][data.p2i[to]] = commodity
- gain = best_gain
- }
+func DescribePath(data planet_data, dims []int, table []State, start int32) (description []string) {
+ for index := start; index > 0 && table[index].from > 0; index = table[index].from {
+ var line string
+ addr := DecodeIndex(dims, index)
+ prev := DecodeIndex(dims, table[index].from)
+ if addr[Fuel] != prev[Fuel] {
+ from := data.i2p[prev[Location]]
+ to := data.i2p[addr[Location]]
+ line += fmt.Sprintf("Jump from %v to %v (%v hyper jump units)", from, to, prev[Fuel]-addr[Fuel])
+ }
+ if addr[Edens] == prev[Edens]-1 {
+ from := data.i2p[prev[Location]]
+ to := data.i2p[addr[Location]]
+ line += fmt.Sprintf("Eden warp from %v to %v", from, to)
+ }
+ if addr[Hold] != prev[Hold] {
+ if addr[Hold] == 0 {
+ quantity := *hold - (prev[UnusedCargo] + prev[Edens] + prev[Cloaks])
+ line += fmt.Sprintf("Sell %v %v", quantity, data.i2c[prev[Hold]])
+ } else if prev[Hold] == 0 {
+ quantity := *hold - (addr[UnusedCargo] + addr[Edens] + addr[Cloaks])
+ line += fmt.Sprintf("Buy %v %v", quantity, data.i2c[addr[Hold]])
+ } else {
+ panic("Switched cargo?")
}
+
+ }
+ if addr[Cloaks] == 1 && prev[Cloaks] == 0 {
+ // TODO: Dump cloaks, convert from cargo?
+ line += "Buy a Cloak"
+ }
+ if addr[Edens] > prev[Edens] {
+ line += fmt.Sprint("Buy ", addr[Edens]-prev[Edens], " Eden Warp Units")
+ }
+ if addr[BuyShields] == 1 && prev[BuyShields] == 0 {
+ line += fmt.Sprint("Buy ", *batteries, " Shield Batterys")
+ }
+ if addr[BuyFighters] == 1 && prev[BuyFighters] == 0 {
+ line += fmt.Sprint("Buy ", *drones, " Fighter Drones")
+ }
+ if addr[Visit] != prev[Visit] {
+ // TODO: verify that the bit chat changed is addr[Location]
+ line += fmt.Sprint("Visit ", data.i2p[addr[Location]])
+ }
+ if line == "" && addr[Hold] == prev[Hold] && addr[Traded] != prev[Traded] {
+ // The Traded dimension is for housekeeping. It doesn't directly
+ // correspond to in-game actions, so don't report transitions.
+ continue
+ }
+ if line == "" {
+ line = fmt.Sprint(prev, " -> ", addr)
}
+ description = append(description, fmt.Sprintf("%13v ", Commas(table[index].value))+line)
}
- return best
+ return
}
// (Example of a use case for generics in Go)
func main() {
flag.Parse()
+ if *start == "" || *funds == 0 {
+ print("--start and --funds are required. --help for more\n")
+ return
+ }
+ if *cpuprofile != "" {
+ f, err := os.Create(*cpuprofile)
+ if err != nil {
+ panic(err)
+ }
+ pprof.StartCPUProfile(f)
+ defer pprof.StopCPUProfile()
+ }
data := ReadData()
+ if *drone_price > 0 {
+ temp := data.Commodities["Fighter Drones"]
+ temp.BasePrice = *drone_price
+ data.Commodities["Fighter Drones"] = temp
+ }
+ if *battery_price > 0 {
+ temp := data.Commodities["Shield Batterys"]
+ temp.BasePrice = *battery_price
+ data.Commodities["Shield Batterys"] = temp
+ }
data.p2i, data.i2p = IndexPlanets(&data.Planets, 0)
data.c2i, data.i2c = IndexCommodities(&data.Commodities, 1)
dims := DimensionSizes(data)
- table := FillStateTable1(data, dims)
- table[0] = State{1, 1}
- best_trades := FindBestTrades(data)
-
- for from := range data.Planets {
- for to := range data.Planets {
- best_trade := "(nothing)"
- if best_trades[data.p2i[from]][data.p2i[to]] != "" {
- best_trade = best_trades[data.p2i[from]][data.p2i[to]]
- }
- fmt.Printf("%s to %s: %s\n", from, to, best_trade)
+ table := CreateStateTable(data, dims)
+ best := FindBestState(data, dims, table)
+ print("\n")
+ if best == -1 {
+ print("Cannot acheive success criteria\n")
+ } else {
+ description := DescribePath(data, dims, table, best)
+ for i := len(description) - 1; i >= 0; i-- {
+ fmt.Println(description[i])
}
}
}