import "flag"
import "fmt"
-import "json"
+import "encoding/json"
import "os"
import "runtime/pprof"
import "strings"
var hold = flag.Int("hold", 300, "Size of your cargo hold")
+var start_hold = flag.String("start_hold", "", "Start with a hold full of cargo")
+
var start_edens = flag.Int("start_edens", 0,
"How many Eden Warp Units are you starting with?")
var visit_string = flag.String("visit", "",
"A comma-separated list of planets to make sure to visit")
-var cpuprofile = flag.String("cpuprofile", "", "write cpu profile to file")
+var tomorrow_weight = flag.Float64("tomorrow_weight", 1.0,
+ "Weight for the expected value of tomorrow's trading. 0.0 - 1.0")
+var cpuprofile = flag.String("cpuprofile", "", "write cpu profile to file")
var visit_cache []string
+
func visit() []string {
if visit_cache == nil {
if *visit_string == "" {
}
var flight_plan_cache []string
+
func flight_plan() []string {
if flight_plan_cache == nil {
if *flight_plan_string == "" {
}
var end_cache map[string]bool
+
func end() map[string]bool {
if end_cache == nil {
if *end_string == "" {
Limit int
}
type Planet struct {
- BeaconOn bool
+ BeaconOn bool
+ Private bool
+ TomorrowValue int
/* Use relative prices rather than absolute prices because you
can get relative prices without traveling to each planet. */
RelativePrices map[string]int
* handled as three dimensions rather than one for simplicity. Placing
* these dimensions first causes the unused cells in the table to be
* grouped together in large blocks. This keeps them from polluting
- * cache lines, and if they are large enough, prevent the memory manager
- * from allocating pages for these areas at all.
+ * cache lines, and if they are large enough, allows the memory manager
+ * to swap out entire pages.
*
* If the table gets too big to fit in RAM:
* * Combine the Edens, Cloaks, and UnusedCargo dimensions. Of the
// The official list of dimensions:
const (
- // Name Num Size Description
- Edens = iota // 1 3 # of Eden warp units (0 - 2 typically)
- Cloaks // 2 2 # of Devices of Cloaking (0 or 1)
- UnusedCargo // 3 4 # of unused cargo spaces (0 - 3 typically)
- Fuel // 4 17 Hyper jump power left (0 - 16)
- Location // 5 26 Location (which planet)
- Hold // 6 15 Cargo bay contents (a *Commodity or nil)
- BuyFighters // 7 2 Errand: Buy fighter drones
- BuyShields // 8 2 Errand: Buy shield batteries
- Visit // 9 2**N Visit: Stop by these N planets in the route
+ // Name Num Size Description
+ Edens = iota // 1 3 # of Eden warp units (0 - 2 typically)
+ Cloaks // 2 1-2 # of Devices of Cloaking (0 or 1)
+ UnusedCargo // 3 4 # of unused cargo spaces (0 - 3 typically)
+ Fuel // 4 17 Hyper jump power left (0 - 16)
+ Location // 5 26 Location (which planet)
+ Hold // 6 15 Cargo bay contents (a *Commodity or nil)
+ Traded // 7 2 Traded yet?
+ BuyFighters // 8 1-2 Errand: Buy fighter drones
+ BuyShields // 9 1-2 Errand: Buy shield batteries
+ Visit // 10 1-2**N Visit: Stop by these N planets in the route
NumDimensions
)
dims[Fuel] = *fuel + 1
dims[Location] = len(data.Planets)
dims[Hold] = len(data.Commodities) + 1
+ dims[Traded] = 2
dims[BuyFighters] = bint(*drones > 0) + 1
dims[BuyShields] = bint(*batteries > 0) + 1
dims[Visit] = 1 << uint(len(visit()))
}
type State struct {
- value, from int
+ value, from int32
}
-func EncodeIndex(dims, addr []int) int {
+const (
+ FROM_ROOT = -2147483647 + iota
+ FROM_UNINITIALIZED
+ VALUE_UNINITIALIZED
+ VALUE_BEING_EVALUATED
+ VALUE_RUBISH
+)
+
+func EncodeIndex(dims, addr []int) int32 {
index := addr[0]
if addr[0] > dims[0] {
panic(0)
}
for i := 1; i < NumDimensions; i++ {
- if addr[i] < 0 || addr[i] > dims[i] {
+ if addr[i] < 0 || addr[i] >= dims[i] {
panic(i)
}
index = index*dims[i] + addr[i]
}
- return index
+ return int32(index)
}
-func DecodeIndex(dims []int, index int) []int {
+func DecodeIndex(dims []int, index int32) []int {
addr := make([]int, NumDimensions)
for i := NumDimensions - 1; i > 0; i-- {
- addr[i] = index % dims[i]
- index /= dims[i]
+ addr[i] = int(index) % dims[i]
+ index /= int32(dims[i])
}
- addr[0] = index
+ addr[0] = int(index)
return addr
}
-func InitializeStateTable(data planet_data, dims []int) []State {
+func CreateStateTable(data planet_data, dims []int) []State {
table := make([]State, StateTableSize(dims))
+ for i := range table {
+ table[i].value = VALUE_UNINITIALIZED
+ table[i].from = FROM_UNINITIALIZED
+ }
addr := make([]int, NumDimensions)
addr[Fuel] = *fuel
addr[Edens] = *start_edens
addr[Location] = data.p2i[*start]
- table[EncodeIndex(dims, addr)].value = *funds
+ if *start_hold != "" {
+ addr[Hold] = data.c2i[*start_hold]
+ }
+ start_index := EncodeIndex(dims, addr)
+ table[start_index].value = int32(*funds)
+ table[start_index].from = FROM_ROOT
return table
}
-/* These four fill procedures fill in the cell at address addr by
- * looking at all the possible ways to reach this cell and selecting
- * the best one.
- *
- * The other obvious implementation choice is to do this the other way
- * around -- for each cell, conditionally overwrite all the other cells
- * that are reachable *from* the considered cell. We choose gathering
- * reads over scattering writes to avoid having to take a bunch of locks.
- */
+/* CellValue fills in the one cell at address addr by looking at all
+ * the possible ways to reach this cell and selecting the best one. */
-func UpdateCell(table []State, here, there, value_difference int) {
- possible_value := table[there].value + value_difference
- if table[there].value > 0 && possible_value > table[here].value {
- table[here].value = possible_value
- table[here].from = there
+func Consider(data planet_data, dims []int, table []State, there []int, value_difference int, best_value *int32, best_source []int) {
+ there_value := CellValue(data, dims, table, there)
+ if value_difference < 0 && int32(-value_difference) > there_value {
+ /* Can't afford this transition */
+ return
+ }
+ possible_value := there_value + int32(value_difference)
+ if possible_value > *best_value {
+ *best_value = possible_value
+ copy(best_source, there)
}
}
-func FillCellByArriving(data planet_data, dims []int, table []State, addr []int) {
+var cell_filled_count int
+
+func CellValue(data planet_data, dims []int, table []State, addr []int) int32 {
my_index := EncodeIndex(dims, addr)
+ if table[my_index].value == VALUE_BEING_EVALUATED {
+ panic("Circular dependency")
+ }
+ if table[my_index].value != VALUE_UNINITIALIZED {
+ return table[my_index].value
+ }
+ table[my_index].value = VALUE_BEING_EVALUATED
+
+ best_value := int32(VALUE_RUBISH)
+ best_source := make([]int, NumDimensions)
other := make([]int, NumDimensions)
copy(other, addr)
+ planet := data.i2p[addr[Location]]
- /* Travel here via a 2-fuel unit jump */
- if addr[Fuel]+2 < dims[Fuel] {
- other[Fuel] = addr[Fuel] + 2
- for other[Location] = 0; other[Location] < dims[Location]; other[Location]++ {
- if data.Planets[data.i2p[addr[Location]]].BeaconOn {
- UpdateCell(table, my_index, EncodeIndex(dims, other), 0)
+ /* Travel here */
+ if addr[Traded] == 0 { /* Can't have traded immediately after traveling. */
+ other[Traded] = 1 /* Travel from states that have done trading. */
+
+ /* Travel here via a 2-fuel unit jump */
+ if addr[Fuel]+2 < dims[Fuel] {
+ other[Fuel] = addr[Fuel] + 2
+ hole_index := (dims[Fuel] - 1) - (addr[Fuel] + 2)
+ if hole_index >= len(flight_plan()) || addr[Location] != data.p2i[flight_plan()[hole_index]] {
+ for other[Location] = 0; other[Location] < dims[Location]; other[Location]++ {
+ if data.Planets[data.i2p[addr[Location]]].BeaconOn {
+ Consider(data, dims, table, other, 0, &best_value, best_source)
+ }
+ }
}
+ other[Location] = addr[Location]
+ other[Fuel] = addr[Fuel]
}
- other[Location] = addr[Location]
- other[Fuel] = addr[Fuel]
- }
- /* Travel here via a hyper hole */
- if addr[Fuel]+1 < dims[Fuel] {
- hole_index := (dims[Fuel] - 1) - (addr[Fuel] + 1)
- if hole_index < len(flight_plan()) && addr[Location] == data.p2i[flight_plan()[hole_index]] {
- other[Fuel] = addr[Fuel] + 1
- for other[Location] = 0; other[Location] < dims[Location]; other[Location]++ {
- UpdateCell(table, my_index, EncodeIndex(dims, other), 0)
+ /* Travel here via a 1-fuel unit jump (a hyper hole) */
+ if addr[Fuel]+1 < dims[Fuel] {
+ hole_index := (dims[Fuel] - 1) - (addr[Fuel] + 1)
+ if hole_index < len(flight_plan()) && addr[Location] == data.p2i[flight_plan()[hole_index]] {
+ other[Fuel] = addr[Fuel] + 1
+ for other[Location] = 0; other[Location] < dims[Location]; other[Location]++ {
+ Consider(data, dims, table, other, 0, &best_value, best_source)
+ }
+ other[Location] = addr[Location]
+ other[Fuel] = addr[Fuel]
}
- other[Location] = addr[Location]
- other[Fuel] = addr[Fuel]
}
- }
- /* Travel here via Eden Warp Unit */
- if addr[Edens]+1 < dims[Edens] && addr[UnusedCargo] > 1 {
- _, available := data.Planets[data.i2p[addr[Location]]].RelativePrices["Eden Warp Units"]
- if !available {
- other[Edens] = addr[Edens] + 1
- other[UnusedCargo] = addr[UnusedCargo] - 1
- for other[Location] = 0; other[Location] < dims[Location]; other[Location]++ {
- UpdateCell(table, my_index, EncodeIndex(dims, other), 0)
+ /* Travel here via Eden Warp Unit */
+ if addr[Edens]+1 < dims[Edens] && addr[UnusedCargo] > 0 {
+ _, available := data.Planets[data.i2p[addr[Location]]].RelativePrices["Eden Warp Units"]
+ if !available {
+ other[Edens] = addr[Edens] + 1
+ if other[Hold] != 0 {
+ other[UnusedCargo] = addr[UnusedCargo] - 1
+ }
+ for other[Location] = 0; other[Location] < dims[Location]; other[Location]++ {
+ Consider(data, dims, table, other, 0, &best_value, best_source)
+ }
+ other[Location] = addr[Location]
+ other[UnusedCargo] = addr[UnusedCargo]
+ other[Edens] = addr[Edens]
}
- other[Location] = addr[Location]
- other[UnusedCargo] = addr[UnusedCargo]
- other[Edens] = addr[Edens]
}
+ other[Traded] = addr[Traded]
}
-}
-func FillCellBySelling(data planet_data, dims []int, table []State, addr []int) {
- if addr[Hold] > 0 {
- // Can't sell and still have cargo
- return
- }
- if addr[UnusedCargo] > 0 {
- // Can't sell everything and still have 'unused' holds
- return
- }
- my_index := EncodeIndex(dims, addr)
- other := make([]int, NumDimensions)
- copy(other, addr)
- planet := data.i2p[addr[Location]]
- for other[Hold] = 0; other[Hold] < dims[Hold]; other[Hold]++ {
- commodity := data.i2c[other[Hold]]
- if !data.Commodities[commodity].CanSell {
- // TODO: Dump cargo
- continue
- }
- relative_price, available := data.Planets[planet].RelativePrices[commodity]
- if !available {
- continue
- }
- base_price := data.Commodities[commodity].BasePrice
- absolute_price := float64(base_price) * float64(relative_price) / 100.0
- sell_price := int(absolute_price * 0.9)
+ /* Trade */
+ if addr[Traded] == 1 {
+ other[Traded] = 0
- for other[UnusedCargo] = 0; other[UnusedCargo] < dims[UnusedCargo]; other[UnusedCargo]++ {
+ /* Consider not trading */
+ Consider(data, dims, table, other, 0, &best_value, best_source)
- quantity := *hold - (other[UnusedCargo] + other[Cloaks] + other[Edens])
- sale_value := quantity * sell_price
- UpdateCell(table, my_index, EncodeIndex(dims, other), sale_value)
- }
- }
- other[UnusedCargo] = addr[UnusedCargo]
-}
+ if !data.Planets[data.i2p[addr[Location]]].Private {
-func FillCellByBuying(data planet_data, dims []int, table []State, addr []int) {
- if addr[Hold] == 0 {
- // Can't buy and then have nothing
- return
- }
- my_index := EncodeIndex(dims, addr)
- other := make([]int, NumDimensions)
- copy(other, addr)
- planet := data.i2p[addr[Location]]
- commodity := data.i2c[addr[Hold]]
- if !data.Commodities[commodity].CanSell {
- return
- }
- relative_price, available := data.Planets[planet].RelativePrices[commodity]
- if !available {
- return
- }
- base_price := data.Commodities[commodity].BasePrice
- absolute_price := int(float64(base_price) * float64(relative_price) / 100.0)
- quantity := *hold - (addr[UnusedCargo] + addr[Cloaks] + addr[Edens])
- total_price := quantity * absolute_price
- other[Hold] = 0
- other[UnusedCargo] = 0
- UpdateCell(table, my_index, EncodeIndex(dims, other), -total_price)
- other[UnusedCargo] = addr[UnusedCargo]
- other[Hold] = addr[Hold]
-}
+ /* Sell */
+ if addr[Hold] == 0 && addr[UnusedCargo] == 0 {
+ for other[Hold] = 0; other[Hold] < dims[Hold]; other[Hold]++ {
+ commodity := data.i2c[other[Hold]]
+ if !data.Commodities[commodity].CanSell {
+ continue
+ }
+ relative_price, available := data.Planets[planet].RelativePrices[commodity]
+ if !available {
+ // TODO: Dump cargo
+ continue
+ }
+ base_price := data.Commodities[commodity].BasePrice
+ absolute_price := float64(base_price) * float64(relative_price) / 100.0
+ sell_price := int(absolute_price * 0.9)
+
+ for other[UnusedCargo] = 0; other[UnusedCargo] < dims[UnusedCargo]; other[UnusedCargo]++ {
+ quantity := *hold - (other[UnusedCargo] + other[Cloaks] + other[Edens])
+ sale_value := quantity * sell_price
+ Consider(data, dims, table, other, sale_value, &best_value, best_source)
+ }
+ }
+ other[UnusedCargo] = addr[UnusedCargo]
+ other[Hold] = addr[Hold]
+ }
-func FillCellByMisc(data planet_data, dims []int, table []State, addr []int) {
- my_index := EncodeIndex(dims, addr)
- other := make([]int, NumDimensions)
- copy(other, addr)
+ /* Buy */
+ other[Traded] = addr[Traded] /* Buy after selling */
+ if addr[Hold] != 0 {
+ commodity := data.i2c[addr[Hold]]
+ if data.Commodities[commodity].CanSell {
+ relative_price, available := data.Planets[planet].RelativePrices[commodity]
+ if available {
+ base_price := data.Commodities[commodity].BasePrice
+ absolute_price := int(float64(base_price) * float64(relative_price) / 100.0)
+ quantity := *hold - (addr[UnusedCargo] + addr[Cloaks] + addr[Edens])
+ total_price := quantity * absolute_price
+ other[Hold] = 0
+ other[UnusedCargo] = 0
+ Consider(data, dims, table, other, -total_price, &best_value, best_source)
+ other[UnusedCargo] = addr[UnusedCargo]
+ other[Hold] = addr[Hold]
+ }
+ }
+ }
+ }
+ other[Traded] = addr[Traded]
+ }
/* Buy a Device of Cloaking */
if addr[Cloaks] == 1 && addr[UnusedCargo] < dims[UnusedCargo]-1 {
if other[Hold] != 0 {
other[UnusedCargo] = addr[UnusedCargo] + 1
}
- UpdateCell(table, my_index, EncodeIndex(dims, other), -absolute_price)
+ Consider(data, dims, table, other, -absolute_price, &best_value, best_source)
other[UnusedCargo] = addr[UnusedCargo]
other[Cloaks] = addr[Cloaks]
}
}
- /* Silly: Dump a Device of Cloaking */
-
/* Buy Fighter Drones */
if addr[BuyFighters] == 1 {
relative_price, available := data.Planets[data.i2p[addr[Location]]].RelativePrices["Fighter Drones"]
if available {
absolute_price := int(float64(data.Commodities["Fighter Drones"].BasePrice) * float64(relative_price) / 100.0)
other[BuyFighters] = 0
- UpdateCell(table, my_index, EncodeIndex(dims, other), -absolute_price * *drones)
+ Consider(data, dims, table, other, -absolute_price**drones, &best_value, best_source)
other[BuyFighters] = addr[BuyFighters]
}
}
if available {
absolute_price := int(float64(data.Commodities["Shield Batterys"].BasePrice) * float64(relative_price) / 100.0)
other[BuyShields] = 0
- UpdateCell(table, my_index, EncodeIndex(dims, other), -absolute_price * *batteries)
+ Consider(data, dims, table, other, -absolute_price**batteries, &best_value, best_source)
other[BuyShields] = addr[BuyShields]
}
}
/* Visit this planet */
- var i uint
- for i = 0; i < uint(len(visit())); i++ {
- if addr[Visit] & (1 << i) != 0 && visit()[i] == data.i2p[addr[Location]] {
+ for i := uint(0); i < uint(len(visit())); i++ {
+ if addr[Visit]&(1<<i) != 0 && visit()[i] == data.i2p[addr[Location]] {
other[Visit] = addr[Visit] & ^(1 << i)
- UpdateCell(table, my_index, EncodeIndex(dims, other), 0)
+ Consider(data, dims, table, other, 0, &best_value, best_source)
}
}
other[Visit] = addr[Visit]
-}
-
-func FillCellByBuyingEdens(data planet_data, dims []int, table []State, addr []int) {
- my_index := EncodeIndex(dims, addr)
- other := make([]int, NumDimensions)
- copy(other, addr)
-
/* Buy Eden warp units */
eden_limit := data.Commodities["Eden Warp Units"].Limit
if addr[Edens] > 0 && addr[Edens] <= eden_limit {
other[UnusedCargo] = addr[UnusedCargo] + quantity
}
if other[UnusedCargo] < dims[UnusedCargo] {
- UpdateCell(table, my_index, EncodeIndex(dims, other), -absolute_price * quantity)
+ Consider(data, dims, table, other, -absolute_price*quantity, &best_value, best_source)
}
}
other[Edens] = addr[Edens]
other[UnusedCargo] = addr[UnusedCargo]
}
}
-}
-func FillStateTable2Iteration(data planet_data, dims []int, table []State,
-addr []int, f func(planet_data, []int, []State, []int)) {
- /* TODO: Justify the safety of the combination of this dimension
- * iteration and the various phases f. */
- for addr[Hold] = 0; addr[Hold] < dims[Hold]; addr[Hold]++ {
- for addr[Cloaks] = 0; addr[Cloaks] < dims[Cloaks]; addr[Cloaks]++ {
- for addr[UnusedCargo] = 0; addr[UnusedCargo] < dims[UnusedCargo]; addr[UnusedCargo]++ {
- for addr[BuyFighters] = 0; addr[BuyFighters] < dims[BuyFighters]; addr[BuyFighters]++ {
- for addr[BuyShields] = 0; addr[BuyShields] < dims[BuyShields]; addr[BuyShields]++ {
- for addr[Visit] = 0; addr[Visit] < dims[Visit]; addr[Visit]++ {
- f(data, dims, table, addr)
- }
- }
- }
- }
+ // Check that we didn't lose track of any temporary modifications to other.
+ for i := 0; i < NumDimensions; i++ {
+ if addr[i] != other[i] {
+ panic(i)
}
}
-}
-func FillStateTable2(data planet_data, dims []int, table []State,
-addr []int, barrier chan<- bool) {
- FillStateTable2Iteration(data, dims, table, addr, FillCellByArriving)
- FillStateTable2Iteration(data, dims, table, addr, FillCellBySelling)
- FillStateTable2Iteration(data, dims, table, addr, FillCellByBuying)
- FillStateTable2Iteration(data, dims, table, addr, FillCellByMisc)
- FillStateTable2Iteration(data, dims, table, addr, FillCellByBuyingEdens)
- if barrier != nil {
- barrier <- true
+ // Sanity check: This cell was in state BEING_EVALUATED
+ // the whole time that it was being evaluated.
+ if table[my_index].value != VALUE_BEING_EVALUATED {
+ panic(my_index)
}
-}
-/* Filling the state table is a set of nested for loops NumDimensions deep.
- * We split this into two procedures: 1 and 2. #1 is the outer, slowest-
- * changing indexes. #1 fires off many calls to #2 that run in parallel.
- * The order of the nesting of the dimensions, the order of iteration within
- * each dimension, and where the 1 / 2 split is placed are carefully chosen
- * to make this arrangement safe.
- *
- * Outermost two layers: Go from high-energy states (lots of fuel, edens) to
- * low-energy state. These must be processed sequentially and in this order
- * because you travel through high-energy states to get to the low-energy
- * states.
- *
- * Third layer: Planet. This is a good layer to parallelize on. There's
- * high enough cardinality that we don't have to mess with parallelizing
- * multiple layers for good utilization (on 2011 machines). Each thread
- * works on one planet's states and need not synchronize with peer threads.
- */
-func FillStateTable1(data planet_data, dims []int, table []State) {
- barrier := make(chan bool, len(data.Planets))
- eden_capacity := data.Commodities["Eden Warp Units"].Limit
- work_units := (float64(*fuel) + 1) * (float64(eden_capacity) + 1)
- work_done := 0.0
- for fuel_remaining := *fuel; fuel_remaining >= 0; fuel_remaining-- {
- /* Make an Eden-buying pass (Eden vendors' energy gradient
- * along the Edens dimension runs backwards) */
- for edens_remaining := 0; edens_remaining <= eden_capacity; edens_remaining++ {
- for planet := range data.Planets {
- if _, available := data.Planets[planet].RelativePrices["Eden Warp Units"]; available {
- addr := make([]int, len(dims))
- addr[Edens] = edens_remaining
- addr[Fuel] = fuel_remaining
- addr[Location] = data.p2i[planet]
- FillStateTable2(data, dims, table, addr, nil)
- }
- }
- }
- for edens_remaining := eden_capacity; edens_remaining >= 0; edens_remaining-- {
- /* Do the brunt of the work */
- for planet := range data.Planets {
- addr := make([]int, len(dims))
- addr[Edens] = edens_remaining
- addr[Fuel] = fuel_remaining
- addr[Location] = data.p2i[planet]
- go FillStateTable2(data, dims, table, addr, barrier)
- }
- for _ = range data.Planets {
- <-barrier
- }
- work_done++
- print(fmt.Sprintf("\r%3.0f%%", 100*work_done/work_units))
- }
+ // Record our findings
+ table[my_index].value = best_value
+ table[my_index].from = EncodeIndex(dims, best_source)
+
+ // UI: Progress bar
+ cell_filled_count++
+ if cell_filled_count&0xfff == 0 {
+ print(fmt.Sprintf("\r%3.1f%%", 100*float64(cell_filled_count)/float64(StateTableSize(dims))))
}
- print("\n")
+
+ return table[my_index].value
}
-func FindBestState(data planet_data, dims []int, table []State) int {
+func FinalState(dims []int) []int {
addr := make([]int, NumDimensions)
addr[Edens] = *end_edens
addr[Cloaks] = dims[Cloaks] - 1
addr[BuyFighters] = dims[BuyFighters] - 1
addr[BuyShields] = dims[BuyShields] - 1
addr[Visit] = dims[Visit] - 1
- // Fuel, Hold, UnusedCargo left at 0
- max_index := -1
- max_value := 0
- for addr[Location] = 0; addr[Location] < dims[Location]; addr[Location]++ {
- if len(end()) == 0 || end()[data.i2p[addr[Location]]] {
- index := EncodeIndex(dims, addr)
- if table[index].value > max_value {
- max_value = table[index].value
- max_index = index
+ addr[Traded] = 1
+ addr[Hold] = 0
+ addr[UnusedCargo] = 0
+ // Fuel and Location are determined by FindBestState
+ return addr
+}
+
+func FindBestState(data planet_data, dims []int, table []State, addr []int) int32 {
+ max_index := int32(-1)
+ max_value := 0.0
+ max_fuel := 1
+ if *fuel == 0 {
+ max_fuel = 0
+ }
+ for addr[Fuel] = 0; addr[Fuel] <= max_fuel; addr[Fuel]++ {
+ for addr[Location] = 0; addr[Location] < dims[Location]; addr[Location]++ {
+ planet := data.i2p[addr[Location]]
+ if len(end()) == 0 || end()[planet] {
+ index := EncodeIndex(dims, addr)
+ today_value := CellValue(data, dims, table, addr)
+ tomorrow_value := *tomorrow_weight * float64(*hold+data.Planets[planet].TomorrowValue)
+ value := float64(today_value) + tomorrow_value
+ if value > max_value {
+ max_value = value
+ max_index = index
+ }
}
}
}
return max_index
}
-func Commas(n int) (s string) {
+func Commas(n int32) (s string) {
+ if n < 0 {
+ panic(n)
+ }
r := n % 1000
n /= 1000
for n > 0 {
return
}
-func DescribePath(data planet_data, dims []int, table []State, start int) (description []string) {
- for index := start; index > 0 && table[index].from > 0; index = table[index].from {
+func DescribePath(data planet_data, dims []int, table []State, start int32) (description []string) {
+ for index := start; table[index].from > FROM_ROOT; index = table[index].from {
+ if table[index].from == FROM_UNINITIALIZED {
+ panic(index)
+ }
var line string
addr := DecodeIndex(dims, index)
prev := DecodeIndex(dims, table[index].from)
to := data.i2p[addr[Location]]
line += fmt.Sprintf("Jump from %v to %v (%v hyper jump units)", from, to, prev[Fuel]-addr[Fuel])
}
- if addr[Edens] == prev[Edens] - 1 {
+ if addr[Edens] == prev[Edens]-1 {
from := data.i2p[prev[Location]]
to := data.i2p[addr[Location]]
line += fmt.Sprintf("Eden warp from %v to %v", from, to)
line += "Buy a Cloak"
}
if addr[Edens] > prev[Edens] {
- line += fmt.Sprint("Buy ", addr[Edens] - prev[Edens], " Eden Warp Units")
+ line += fmt.Sprint("Buy ", addr[Edens]-prev[Edens], " Eden Warp Units")
}
if addr[BuyShields] == 1 && prev[BuyShields] == 0 {
line += fmt.Sprint("Buy ", *batteries, " Shield Batterys")
// TODO: verify that the bit chat changed is addr[Location]
line += fmt.Sprint("Visit ", data.i2p[addr[Location]])
}
+ if line == "" && addr[Hold] == prev[Hold] && addr[Traded] != prev[Traded] {
+ // The Traded dimension is for housekeeping. It doesn't directly
+ // correspond to in-game actions, so don't report transitions.
+ continue
+ }
if line == "" {
line = fmt.Sprint(prev, " -> ", addr)
}
- description = append(description, fmt.Sprintf("%13v ", Commas(table[index].value)) + line)
+ description = append(description, fmt.Sprintf("%13v ", Commas(table[index].value))+line)
}
return
}
func main() {
flag.Parse()
+ if *start == "" || *funds == 0 {
+ print("--start and --funds are required. --help for more\n")
+ return
+ }
if *cpuprofile != "" {
f, err := os.Create(*cpuprofile)
if err != nil {
data.p2i, data.i2p = IndexPlanets(&data.Planets, 0)
data.c2i, data.i2c = IndexCommodities(&data.Commodities, 1)
dims := DimensionSizes(data)
- table := InitializeStateTable(data, dims)
- FillStateTable1(data, dims, table)
- best := FindBestState(data, dims, table)
+ table := CreateStateTable(data, dims)
+ final_state := FinalState(dims)
+ best := FindBestState(data, dims, table, final_state)
+ print("\n")
if best == -1 {
print("Cannot acheive success criteria\n")
- } else {
- description := DescribePath(data, dims, table, best)
- for i := len(description) - 1; i >= 0; i-- {
- fmt.Println(description[i])
- }
+ return
+ }
+ description := DescribePath(data, dims, table, best)
+ for i := len(description) - 1; i >= 0; i-- {
+ fmt.Println(description[i])
+ }
+
+ // Ok, that was the important stuff. Now some fun stuff.
+
+ // Calculate total cost of fighters and shields
+ if *drones > 0 || *batteries > 0 {
+ fmt.Println()
+ }
+ if *drones > 0 {
+ final_state[BuyFighters] = 0
+ alt_best := FindBestState(data, dims, table, final_state)
+ cost := table[alt_best].value - table[best].value
+ fmt.Println("\rDrones were", float64(cost)/float64(*drones), "each")
+ final_state[BuyFighters] = 1
+ }
+ if *batteries > 0 {
+ final_state[BuyShields] = 0
+ alt_best := FindBestState(data, dims, table, final_state)
+ cost := table[alt_best].value - table[best].value
+ fmt.Println("\rBatteries were", float64(cost)/float64(*batteries), "each")
+ final_state[BuyShields] = 1
}
+
+ // Use extra eden warps
+ if *end_edens > 0 {
+ fmt.Println()
+ }
+ for extra_edens := 1; extra_edens <= *end_edens; extra_edens++ {
+ final_state[Edens] = *end_edens - extra_edens
+ alt_best := FindBestState(data, dims, table, final_state)
+ extra_funds := table[alt_best].value - table[best].value
+ fmt.Println("\rUse", extra_edens, "extra edens, make an extra",
+ Commas(extra_funds), "(",
+ Commas(extra_funds/int32(extra_edens)), "per eden)")
+ }
+ final_state[Edens] = *end_edens
+
+ // Cost of visiting places
+ if dims[Visit] > 1 {
+ fmt.Println()
+ }
+ for i := uint(0); i < uint(len(visit())); i++ {
+ all_bits := dims[Visit] - 1
+ final_state[Visit] = all_bits & ^(1 << i)
+ alt_best := FindBestState(data, dims, table, final_state)
+ cost := table[alt_best].value - table[best].value
+ fmt.Println("\r", Commas(cost), "Cost to visit", visit()[i])
+ }
+ final_state[Visit] = dims[Visit] - 1
+
}