/* Planeteer: Give trade route advice for Planets: The Exploration of Space * Copyright (C) 2011 Scott Worley * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU Affero General Public License as * published by the Free Software Foundation, either version 3 of the * License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Affero General Public License for more details. * * You should have received a copy of the GNU Affero General Public License * along with this program. If not, see . */ package main import "flag" import "fmt" import "json" import "os" import "strings" var funds = flag.Int("funds", 0, "Starting funds") var start = flag.String("start", "", "The planet to start at") var flight_plan_string = flag.String("flight_plan", "", "Your hyper-holes for the day, comma-separated.") var end_string = flag.String("end", "", "A comma-separated list of acceptable ending planets.") var planet_data_file = flag.String("planet_data_file", "planet-data", "The file to read planet data from") var fuel = flag.Int("fuel", 16, "Hyper Jump power left") var hold = flag.Int("hold", 300, "Size of your cargo hold") var start_edens = flag.Int("start_edens", 0, "How many Eden Warp Units are you starting with?") var end_edens = flag.Int("end_edens", 0, "How many Eden Warp Units would you like to keep (not use)?") var cloak = flag.Bool("cloak", false, "Make sure to end with a Device of Cloaking") var drones = flag.Int("drones", 0, "Buy this many Fighter Drones") var batteries = flag.Int("batteries", 0, "Buy this many Shield Batterys") var visit_string = flag.String("visit", "", "A comma-separated list of planets to make sure to visit") func visit() []string { if *visit_string == "" { return nil } return strings.Split(*visit_string, ",") } func flight_plan() []string { if *flight_plan_string == "" { return nil } return strings.Split(*flight_plan_string, ",") } func end() map[string]bool { if *end_string == "" { return nil } m := make(map[string]bool) for _, p := range strings.Split(*end_string, ",") { m[p] = true } return m } type Commodity struct { BasePrice int CanSell bool Limit int } type Planet struct { BeaconOn bool /* Use relative prices rather than absolute prices because you can get relative prices without traveling to each planet. */ RelativePrices map[string]int } type planet_data struct { Commodities map[string]Commodity Planets map[string]Planet p2i, c2i map[string]int // Generated; not read from file i2p, i2c []string // Generated; not read from file } func ReadData() (data planet_data) { f, err := os.Open(*planet_data_file) if err != nil { panic(err) } defer f.Close() err = json.NewDecoder(f).Decode(&data) if err != nil { panic(err) } return } /* This program operates by filling in a state table representing the best * possible trips you could make; the ones that makes you the most money. * This is feasible because we don't look at all the possible trips. * We define a list of things that are germane to this game and then only * consider the best outcome in each possible game state. * * Each cell in the table represents a state in the game. In each cell, * we track two things: 1. the most money you could possibly have while in * that state and 2. one possible way to get into that state with that * amount of money. * * A basic analysis can be done with a two-dimensional table: location and * fuel. planeteer-1.0 used this two-dimensional table. This version * adds features mostly by adding dimensions to this table. * * Note that the sizes of each dimension are data driven. Many dimensions * collapse to one possible value (ie, disappear) if the corresponding * feature is not enabled. * * The order of the dimensions in the list of constants below determines * their layout in RAM. The cargo-based 'dimensions' are not completely * independent -- some combinations are illegal and not used. They are * handled as three dimensions rather than one for simplicity. Placing * these dimensions first causes the unused cells in the table to be * grouped together in large blocks. This keeps them from polluting * cache lines, and if they are large enough, prevent the memory manager * from allocating pages for these areas at all. * * If the table gets too big to fit in RAM: * * Combine the Edens, Cloaks, and UnusedCargo dimensions. Of the * 24 combinations, only 15 are legal: a 38% savings. * * Reduce the size of the Fuel dimension to 3. We only ever look * backwards 2 units, so just rotate the logical values through * the same 3 physical addresses. This is good for an 82% savings. * * Reduce the size of the Edens dimension from 3 to 2, for the * same reasons as Fuel above. 33% savings. * * Buy more ram. (Just sayin'. It's cheaper than you think.) * */ // The official list of dimensions: const ( // Name Num Size Description Edens = iota // 1 3 # of Eden warp units (0 - 2 typically) Cloaks // 2 2 # of Devices of Cloaking (0 or 1) UnusedCargo // 3 4 # of unused cargo spaces (0 - 3 typically) Fuel // 4 17 Hyper jump power left (0 - 16) Location // 5 26 Location (which planet) Hold // 6 15 Cargo bay contents (a *Commodity or nil) NeedFighters // 7 2 Errand: Buy fighter drones (needed or not) NeedShields // 8 2 Errand: Buy shield batteries (needed or not) Visit // 9 2**N Visit: Stop by these N planets in the route NumDimensions ) func bint(b bool) int { if b { return 1 } return 0 } func DimensionSizes(data planet_data) []int { eden_capacity := data.Commodities["Eden Warp Units"].Limit if *start_edens > eden_capacity { eden_capacity = *start_edens } cloak_capacity := bint(*cloak) dims := make([]int, NumDimensions) dims[Edens] = eden_capacity + 1 dims[Cloaks] = cloak_capacity + 1 dims[UnusedCargo] = eden_capacity + cloak_capacity + 1 dims[Fuel] = *fuel + 1 dims[Location] = len(data.Planets) dims[Hold] = len(data.Commodities) + 1 dims[NeedFighters] = bint(*drones > 0) + 1 dims[NeedShields] = bint(*batteries > 0) + 1 dims[Visit] = 1 << uint(len(visit())) // Remind myself to add a line above when adding new dimensions for i, dim := range dims { if dim < 1 { panic(i) } } return dims } func StateTableSize(dims []int) int { product := 1 for _, size := range dims { product *= size } return product } type State struct { value, from int } func EncodeIndex(dims, addr []int) int { index := addr[0] if addr[0] > dims[0] { panic(0) } for i := 1; i < NumDimensions; i++ { if addr[i] < 0 || addr[i] > dims[i] { panic(i) } index = index*dims[i] + addr[i] } return index } func DecodeIndex(dims []int, index int) []int { addr := make([]int, NumDimensions) for i := NumDimensions - 1; i > 0; i-- { addr[i] = index % dims[i] index /= dims[i] } addr[0] = index return addr } func InitializeStateTable(data planet_data, dims []int) []State { table := make([]State, StateTableSize(dims)) addr := make([]int, NumDimensions) addr[Fuel] = *fuel addr[Edens] = *start_edens addr[Location] = data.p2i[*start] table[EncodeIndex(dims, addr)].value = *funds return table } /* These four fill procedures fill in the cell at address addr by * looking at all the possible ways to reach this cell and selecting * the best one. * * The other obvious implementation choice is to do this the other way * around -- for each cell, conditionally overwrite all the other cells * that are reachable *from* the considered cell. We choose gathering * reads over scattering writes to avoid having to take a bunch of locks. */ func UpdateCell(table []State, here, there, value_difference int) { possible_value := table[there].value + value_difference if table[there].value > 0 && possible_value > table[here].value { table[here].value = possible_value table[here].from = there } } func FillCellByArriving(data planet_data, dims []int, table []State, addr []int) { my_index := EncodeIndex(dims, addr) other := make([]int, NumDimensions) copy(other, addr) /* Travel here via a 2-fuel unit jump */ if addr[Fuel]+2 < dims[Fuel] { other[Fuel] = addr[Fuel] + 2 for other[Location] = 0; other[Location] < dims[Location]; other[Location]++ { if data.Planets[data.i2p[addr[Location]]].BeaconOn { UpdateCell(table, my_index, EncodeIndex(dims, other), 0) } } other[Location] = addr[Location] other[Fuel] = addr[Fuel] } /* Travel here via a hyper hole */ if addr[Fuel]+1 < dims[Fuel] { hole_index := (dims[Fuel] - 1) - (addr[Fuel] + 1) if hole_index < len(flight_plan()) && addr[Location] == data.p2i[flight_plan()[hole_index]] { other[Fuel] = addr[Fuel] + 1 for other[Location] = 0; other[Location] < dims[Location]; other[Location]++ { UpdateCell(table, my_index, EncodeIndex(dims, other), 0) } other[Location] = addr[Location] other[Fuel] = addr[Fuel] } } /* Travel here via Eden Warp Unit */ if addr[Edens]+1 < dims[Edens] && addr[UnusedCargo] > 1 { _, available := data.Planets[data.i2p[addr[Location]]].RelativePrices["Eden Warp Units"] if !available { other[Edens] = addr[Edens] + 1 other[UnusedCargo] = addr[UnusedCargo] - 1 for other[Location] = 0; other[Location] < dims[Location]; other[Location]++ { UpdateCell(table, my_index, EncodeIndex(dims, other), 0) } other[Location] = addr[Location] other[UnusedCargo] = addr[UnusedCargo] other[Edens] = addr[Edens] } } } func FillCellBySelling(data planet_data, dims []int, table []State, addr []int) { if addr[Hold] > 0 { // Can't sell and still have cargo return } if addr[UnusedCargo] > 0 { // Can't sell everything and still have 'unused' holds return } my_index := EncodeIndex(dims, addr) other := make([]int, NumDimensions) copy(other, addr) planet := data.i2p[addr[Location]] for other[Hold] = 0; other[Hold] < dims[Hold]; other[Hold]++ { commodity := data.i2c[other[Hold]] if !data.Commodities[commodity].CanSell { // TODO: Dump cargo continue } relative_price, available := data.Planets[planet].RelativePrices[commodity] if !available { continue } base_price := data.Commodities[commodity].BasePrice absolute_price := float64(base_price) * float64(relative_price) / 100.0 sell_price := int(absolute_price * 0.9) for other[UnusedCargo] = 0; other[UnusedCargo] < dims[UnusedCargo]; other[UnusedCargo]++ { quantity := *hold - (other[UnusedCargo] + other[Cloaks] + other[Edens]) sale_value := quantity * sell_price UpdateCell(table, my_index, EncodeIndex(dims, other), sale_value) } } other[UnusedCargo] = addr[UnusedCargo] } func FillCellByBuying(data planet_data, dims []int, table []State, addr []int) { if addr[Hold] == 0 { // Can't buy and then have nothing return } my_index := EncodeIndex(dims, addr) other := make([]int, NumDimensions) copy(other, addr) planet := data.i2p[addr[Location]] commodity := data.i2c[addr[Hold]] if !data.Commodities[commodity].CanSell { return } relative_price, available := data.Planets[planet].RelativePrices[commodity] if !available { return } base_price := data.Commodities[commodity].BasePrice absolute_price := int(float64(base_price) * float64(relative_price) / 100.0) quantity := *hold - (addr[UnusedCargo] + addr[Cloaks] + addr[Edens]) total_price := quantity * absolute_price other[Hold] = 0 other[UnusedCargo] = 0 UpdateCell(table, my_index, EncodeIndex(dims, other), -total_price) other[UnusedCargo] = addr[UnusedCargo] other[Hold] = addr[Hold] } func FillCellByMisc(data planet_data, dims []int, table []State, addr []int) { my_index := EncodeIndex(dims, addr) other := make([]int, NumDimensions) copy(other, addr) /* Buy a Device of Cloaking */ if addr[Cloaks] == 1 && addr[UnusedCargo] < dims[UnusedCargo]-1 { relative_price, available := data.Planets[data.i2p[addr[Location]]].RelativePrices["Device Of Cloakings"] if available { absolute_price := int(float64(data.Commodities["Device Of Cloakings"].BasePrice) * float64(relative_price) / 100.0) other[Cloaks] = 0 if other[Hold] != 0 { other[UnusedCargo] = addr[UnusedCargo] + 1 } UpdateCell(table, my_index, EncodeIndex(dims, other), -absolute_price) other[UnusedCargo] = addr[UnusedCargo] other[Cloaks] = addr[Cloaks] } } /* Silly: Dump a Device of Cloaking */ /* Buy Fighter Drones */ /* Buy Shield Batteries */ /* Visit this planet */ } func FillCellByBuyingEdens(data planet_data, dims []int, table []State, addr []int) { my_index := EncodeIndex(dims, addr) other := make([]int, NumDimensions) copy(other, addr) /* Buy Eden warp units */ eden_limit := data.Commodities["Eden Warp Units"].Limit if addr[Edens] > 0 && addr[Edens] <= eden_limit { relative_price, available := data.Planets[data.i2p[addr[Location]]].RelativePrices["Eden Warp Units"] if available { absolute_price := int(float64(data.Commodities["Eden Warp Units"].BasePrice) * float64(relative_price) / 100.0) for quantity := addr[Edens]; quantity > 0; quantity-- { other[Edens] = addr[Edens] - quantity if addr[Hold] != 0 { other[UnusedCargo] = addr[UnusedCargo] + quantity } if other[UnusedCargo] < dims[UnusedCargo] { UpdateCell(table, my_index, EncodeIndex(dims, other), -absolute_price * quantity) } } other[Edens] = addr[Edens] other[UnusedCargo] = addr[UnusedCargo] } } } func FillStateTable2Iteration(data planet_data, dims []int, table []State, addr []int, f func(planet_data, []int, []State, []int)) { /* TODO: Justify the safety of the combination of this dimension * iteration and the various phases f. */ for addr[Hold] = 0; addr[Hold] < dims[Hold]; addr[Hold]++ { for addr[Cloaks] = 0; addr[Cloaks] < dims[Cloaks]; addr[Cloaks]++ { for addr[UnusedCargo] = 0; addr[UnusedCargo] < dims[UnusedCargo]; addr[UnusedCargo]++ { for addr[NeedFighters] = 0; addr[NeedFighters] < dims[NeedFighters]; addr[NeedFighters]++ { for addr[NeedShields] = 0; addr[NeedShields] < dims[NeedShields]; addr[NeedShields]++ { for addr[Visit] = 0; addr[Visit] < dims[Visit]; addr[Visit]++ { f(data, dims, table, addr) } } } } } } } func FillStateTable2(data planet_data, dims []int, table []State, addr []int, barrier chan<- bool) { FillStateTable2Iteration(data, dims, table, addr, FillCellByArriving) FillStateTable2Iteration(data, dims, table, addr, FillCellBySelling) FillStateTable2Iteration(data, dims, table, addr, FillCellByBuying) FillStateTable2Iteration(data, dims, table, addr, FillCellByMisc) barrier <- true } /* Filling the state table is a set of nested for loops NumDimensions deep. * We split this into two procedures: 1 and 2. #1 is the outer, slowest- * changing indexes. #1 fires off many calls to #2 that run in parallel. * The order of the nesting of the dimensions, the order of iteration within * each dimension, and where the 1 / 2 split is placed are carefully chosen * to make this arrangement safe. * * Outermost two layers: Go from high-energy states (lots of fuel, edens) to * low-energy state. These must be processed sequentially and in this order * because you travel through high-energy states to get to the low-energy * states. * * Third layer: Planet. This is a good layer to parallelize on. There's * high enough cardinality that we don't have to mess with parallelizing * multiple layers for good utilization (on 2011 machines). Each thread * works on one planet's states and need not synchronize with peer threads. */ func FillStateTable1(data planet_data, dims []int, table []State) { barrier := make(chan bool, len(data.Planets)) eden_capacity := data.Commodities["Eden Warp Units"].Limit work_units := (float64(*fuel) + 1) * (float64(eden_capacity) + 1) work_done := 0.0 for fuel_remaining := *fuel; fuel_remaining >= 0; fuel_remaining-- { for edens_remaining := eden_capacity; edens_remaining >= 0; edens_remaining-- { /* Do the brunt of the work */ for planet := range data.Planets { addr := make([]int, len(dims)) addr[Edens] = edens_remaining addr[Fuel] = fuel_remaining addr[Location] = data.p2i[planet] go FillStateTable2(data, dims, table, addr, barrier) } for _ = range data.Planets { <-barrier } work_done++ print(fmt.Sprintf("\r%3.0f%%", 100*work_done/work_units)) } /* Make an Eden-buying pass (uphill) */ addr := make([]int, len(dims)) addr[Fuel] = fuel_remaining for addr[Edens] = 0; addr[Edens] <= eden_capacity; addr[Edens]++ { for planet := range data.Planets { addr[Location] = data.p2i[planet] FillStateTable2Iteration(data, dims, table, addr, FillCellByBuyingEdens) } } } print("\n") } func FindBestState(data planet_data, dims []int, table []State) int { addr := make([]int, NumDimensions) addr[Edens] = *end_edens addr[Cloaks] = dims[Cloaks] - 1 addr[NeedFighters] = dims[NeedFighters] - 1 addr[NeedShields] = dims[NeedShields] - 1 addr[Visit] = dims[Visit] - 1 // Fuel, Hold, UnusedCargo left at 0 max_index := -1 max_value := 0 for addr[Location] = 0; addr[Location] < dims[Location]; addr[Location]++ { if len(end()) == 0 || end()[data.i2p[addr[Location]]] { index := EncodeIndex(dims, addr) if table[index].value > max_value { max_value = table[index].value max_index = index } } } return max_index } func Commas(n int) (s string) { r := n % 1000 n /= 1000 for n > 0 { s = fmt.Sprintf(",%03d", r) + s r = n % 1000 n /= 1000 } s = fmt.Sprint(r) + s return } func DescribePath(data planet_data, dims []int, table []State, start int) (description []string) { for index := start; index > 0 && table[index].from > 0; index = table[index].from { var line string addr := DecodeIndex(dims, index) prev := DecodeIndex(dims, table[index].from) if addr[Fuel] != prev[Fuel] { from := data.i2p[prev[Location]] to := data.i2p[addr[Location]] line += fmt.Sprintf("Jump from %v to %v (%v hyper jump units)", from, to, prev[Fuel]-addr[Fuel]) } if addr[Edens] == prev[Edens] - 1 { from := data.i2p[prev[Location]] to := data.i2p[addr[Location]] line += fmt.Sprintf("Eden warp from %v to %v", from, to) } if addr[Hold] != prev[Hold] { if addr[Hold] == 0 { quantity := *hold - (prev[UnusedCargo] + prev[Edens] + prev[Cloaks]) line += fmt.Sprintf("Sell %v %v", quantity, data.i2c[prev[Hold]]) } else if prev[Hold] == 0 { quantity := *hold - (addr[UnusedCargo] + addr[Edens] + addr[Cloaks]) line += fmt.Sprintf("Buy %v %v", quantity, data.i2c[addr[Hold]]) } else { panic("Switched cargo?") } } if addr[Cloaks] == 1 && prev[Cloaks] == 0 { // TODO: Dump cloaks, convert from cargo? line += "Buy a Cloak" } if addr[Edens] > prev[Edens] { line += fmt.Sprint("Buy ", addr[Edens] - prev[Edens], " Eden Warp Units") } if line == "" { line = fmt.Sprint(prev, " -> ", addr) } description = append(description, fmt.Sprintf("%13v ", Commas(table[index].value)) + line) } return } // (Example of a use case for generics in Go) func IndexPlanets(m *map[string]Planet, start_at int) (map[string]int, []string) { e2i := make(map[string]int, len(*m)+start_at) i2e := make([]string, len(*m)+start_at) i := start_at for e := range *m { e2i[e] = i i2e[i] = e i++ } return e2i, i2e } func IndexCommodities(m *map[string]Commodity, start_at int) (map[string]int, []string) { e2i := make(map[string]int, len(*m)+start_at) i2e := make([]string, len(*m)+start_at) i := start_at for e := range *m { e2i[e] = i i2e[i] = e i++ } return e2i, i2e } func main() { flag.Parse() data := ReadData() data.p2i, data.i2p = IndexPlanets(&data.Planets, 0) data.c2i, data.i2c = IndexCommodities(&data.Commodities, 1) dims := DimensionSizes(data) table := InitializeStateTable(data, dims) FillStateTable1(data, dims, table) best := FindBestState(data, dims, table) if best == -1 { print("Cannot acheive success criteria\n") } else { description := DescribePath(data, dims, table, best) for i := len(description) - 1; i >= 0; i-- { fmt.Println(description[i]) } } }