]>
Commit | Line | Data |
---|---|---|
1 | /* Planeteer: Give trade route advice for Planets: The Exploration of Space | |
2 | * Copyright (C) 2011 Scott Worley <sworley@chkno.net> | |
3 | * | |
4 | * This program is free software: you can redistribute it and/or modify | |
5 | * it under the terms of the GNU Affero General Public License as | |
6 | * published by the Free Software Foundation, either version 3 of the | |
7 | * License, or (at your option) any later version. | |
8 | * | |
9 | * This program is distributed in the hope that it will be useful, | |
10 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
11 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
12 | * GNU Affero General Public License for more details. | |
13 | * | |
14 | * You should have received a copy of the GNU Affero General Public License | |
15 | * along with this program. If not, see <http://www.gnu.org/licenses/>. | |
16 | */ | |
17 | ||
18 | package main | |
19 | ||
20 | import "flag" | |
21 | import "fmt" | |
22 | import "json" | |
23 | import "os" | |
24 | import "strings" | |
25 | ||
26 | var start = flag.String("start", "", | |
27 | "The planet to start at") | |
28 | ||
29 | var flight_plan_string = flag.String("flight_plan", "", | |
30 | "Your hidey-holes for the day, comma-separated.") | |
31 | ||
32 | var end = flag.String("end", "", | |
33 | "A comma-separated list of acceptable ending planets.") | |
34 | ||
35 | var planet_data_file = flag.String("planet_data_file", "planet-data", | |
36 | "The file to read planet data from") | |
37 | ||
38 | var fuel = flag.Int("fuel", 16, "Reactor units") | |
39 | ||
40 | var hold = flag.Int("hold", 300, "Size of your cargo hold") | |
41 | ||
42 | var start_edens = flag.Int("start_edens", 0, | |
43 | "How many Eden Warp Units are you starting with?") | |
44 | ||
45 | var end_edens = flag.Int("end_edens", 0, | |
46 | "How many Eden Warp Units would you like to keep (not use)?") | |
47 | ||
48 | var cloak = flag.Bool("cloak", false, | |
49 | "Make sure to end with a Device of Cloaking") | |
50 | ||
51 | var drones = flag.Int("drones", 0, "Buy this many Fighter Drones") | |
52 | ||
53 | var batteries = flag.Int("batteries", 0, "Buy this many Shield Batterys") | |
54 | ||
55 | var visit_string = flag.String("visit", "", | |
56 | "A comma-separated list of planets to make sure to visit") | |
57 | ||
58 | func visit() []string { | |
59 | if *visit_string == "" { | |
60 | return []string{} | |
61 | } | |
62 | return strings.Split(*visit_string, ",") | |
63 | } | |
64 | ||
65 | func flight_plan() []string { | |
66 | if *flight_plan_string == "" { | |
67 | return []string{} | |
68 | } | |
69 | return strings.Split(*flight_plan_string, ",") | |
70 | } | |
71 | ||
72 | type Commodity struct { | |
73 | BasePrice int | |
74 | CanSell bool | |
75 | Limit int | |
76 | } | |
77 | type Planet struct { | |
78 | BeaconOn bool | |
79 | /* Use relative prices rather than absolute prices because you | |
80 | can get relative prices without traveling to each planet. */ | |
81 | RelativePrices map[string]int | |
82 | } | |
83 | type planet_data struct { | |
84 | Commodities map[string]Commodity | |
85 | Planets map[string]Planet | |
86 | p2i, c2i map[string]int // Generated; not read from file | |
87 | i2p, i2c []string // Generated; not read from file | |
88 | } | |
89 | ||
90 | func ReadData() (data planet_data) { | |
91 | f, err := os.Open(*planet_data_file) | |
92 | if err != nil { | |
93 | panic(err) | |
94 | } | |
95 | defer f.Close() | |
96 | err = json.NewDecoder(f).Decode(&data) | |
97 | if err != nil { | |
98 | panic(err) | |
99 | } | |
100 | return | |
101 | } | |
102 | ||
103 | /* This program operates by filling in a state table representing the best | |
104 | * possible trips you could make; the ones that makes you the most money. | |
105 | * This is feasible because we don't look at all the possible trips. | |
106 | * We define a list of things that are germane to this game and then only | |
107 | * consider the best outcome in each possible game state. | |
108 | * | |
109 | * Each cell in the table represents a state in the game. In each cell, | |
110 | * we track two things: 1. the most money you could possibly have while in | |
111 | * that state and 2. one possible way to get into that state with that | |
112 | * amount of money. | |
113 | * | |
114 | * A basic analysis can be done with a two-dimensional table: location and | |
115 | * fuel. planeteer-1.0 used this two-dimensional table. This version | |
116 | * adds features mostly by adding dimensions to this table. | |
117 | * | |
118 | * Note that the sizes of each dimension are data driven. Many dimensions | |
119 | * collapse to one possible value (ie, disappear) if the corresponding | |
120 | * feature is not enabled. | |
121 | * | |
122 | * The order of the dimensions in the list of constants below determines | |
123 | * their layout in RAM. The cargo-based 'dimensions' are not completely | |
124 | * independent -- some combinations are illegal and not used. They are | |
125 | * handled as three dimensions rather than one for simplicity. Placing | |
126 | * these dimensions first causes the unused cells in the table to be | |
127 | * grouped together in large blocks. This keeps them from polluting | |
128 | * cache lines, and if they are large enough, prevent the memory manager | |
129 | * from allocating pages for these areas at all. | |
130 | * | |
131 | * If the table gets too big to fit in RAM: | |
132 | * * Combine the Edens, Cloaks, and UnusedCargo dimensions. Of the | |
133 | * 24 combinations, only 15 are legal: a 38% savings. | |
134 | * * Reduce the size of the Fuel dimension to 3. We only ever look | |
135 | * backwards 2 units, so just rotate the logical values through | |
136 | * the same 3 physical addresses. This is good for an 82% savings. | |
137 | * * Reduce the size of the Edens dimension from 3 to 2, for the | |
138 | * same reasons as Fuel above. 33% savings. | |
139 | * * Buy more ram. (Just sayin'. It's cheaper than you think.) | |
140 | * | |
141 | */ | |
142 | ||
143 | // The official list of dimensions: | |
144 | const ( | |
145 | // Name Num Size Description | |
146 | Edens = iota // 1 3 # of Eden warp units (0 - 2 typically) | |
147 | Cloaks // 2 2 # of Devices of Cloaking (0 or 1) | |
148 | UnusedCargo // 3 4 # of unused cargo spaces (0 - 3 typically) | |
149 | Fuel // 4 17 Reactor power left (0 - 16) | |
150 | Location // 5 26 Location (which planet) | |
151 | Hold // 6 15 Cargo bay contents (a *Commodity or nil) | |
152 | NeedFighters // 7 2 Errand: Buy fighter drones (needed or not) | |
153 | NeedShields // 8 2 Errand: Buy shield batteries (needed or not) | |
154 | Visit // 9 2**N Visit: Stop by these N planets in the route | |
155 | ||
156 | NumDimensions | |
157 | ) | |
158 | ||
159 | func bint(b bool) int { | |
160 | if b { | |
161 | return 1 | |
162 | } | |
163 | return 0 | |
164 | } | |
165 | ||
166 | func DimensionSizes(data planet_data) []int { | |
167 | eden_capacity := data.Commodities["Eden Warp Units"].Limit | |
168 | cloak_capacity := bint(*cloak) | |
169 | dims := make([]int, NumDimensions) | |
170 | dims[Edens] = eden_capacity + 1 | |
171 | dims[Cloaks] = cloak_capacity + 1 | |
172 | dims[UnusedCargo] = eden_capacity + cloak_capacity + 1 | |
173 | dims[Fuel] = *fuel + 1 | |
174 | dims[Location] = len(data.Planets) | |
175 | dims[Hold] = len(data.Commodities) | |
176 | dims[NeedFighters] = bint(*drones > 0) + 1 | |
177 | dims[NeedShields] = bint(*batteries > 0) + 1 | |
178 | dims[Visit] = 1 << uint(len(visit())) | |
179 | ||
180 | // Remind myself to add a line above when adding new dimensions | |
181 | for i, dim := range dims { | |
182 | if dim < 1 { | |
183 | panic(i) | |
184 | } | |
185 | } | |
186 | return dims | |
187 | } | |
188 | ||
189 | func StateTableSize(dims []int) int { | |
190 | product := 1 | |
191 | for _, size := range dims { | |
192 | product *= size | |
193 | } | |
194 | return product | |
195 | } | |
196 | ||
197 | type State struct { | |
198 | value, from int | |
199 | } | |
200 | ||
201 | func EncodeIndex(dims, addr []int) int { | |
202 | index := addr[0] | |
203 | if addr[0] > dims[0] { | |
204 | panic(0) | |
205 | } | |
206 | for i := 1; i < len(dims); i++ { | |
207 | if addr[i] > dims[i] { | |
208 | panic(i) | |
209 | } | |
210 | index = index*dims[i] + addr[i] | |
211 | } | |
212 | return index | |
213 | } | |
214 | ||
215 | func DecodeIndex(dims []int, index int) []int { | |
216 | addr := make([]int, len(dims)) | |
217 | for i := len(dims) - 1; i > 0; i-- { | |
218 | addr[i] = index % dims[i] | |
219 | index /= dims[i] | |
220 | } | |
221 | addr[0] = index | |
222 | return addr | |
223 | } | |
224 | ||
225 | func InitializeStateTable(data planet_data, dims []int, table []State) { | |
226 | } | |
227 | ||
228 | /* Fill in the cell at address addr by looking at all the possible ways | |
229 | * to reach this cell and selecting the best one. | |
230 | * | |
231 | * The other obvious implementation choice is to do this the other way | |
232 | * around -- for each cell, conditionally overwrite all the other cells | |
233 | * that are reachable *from* the considered cell. We choose gathering | |
234 | * reads over scattering writes to avoid having to take a bunch of locks. | |
235 | * | |
236 | * The order that we check things here matters only for value ties. We | |
237 | * keep the first best path. So when action order doesn't matter, the | |
238 | * check that is performed first here will appear in the output first. | |
239 | */ | |
240 | func FillStateTableCell(data planet_data, dims []int, table []State, addr []int) { | |
241 | my_index := EncodeIndex(dims, addr) | |
242 | other := make([]int, NumDimensions) | |
243 | copy(other, addr) | |
244 | ||
245 | /* Travel here via a 2-fuel unit jump */ | |
246 | if addr[Fuel] + 2 < dims[Fuel] { | |
247 | other[Fuel] = addr[Fuel] + 2 | |
248 | for p := 0; p < dims[Location]; p++ { | |
249 | other[Location] = p | |
250 | if table[EncodeIndex(dims, other)].value > table[my_index].value { | |
251 | table[my_index].value = table[EncodeIndex(dims, other)].value | |
252 | table[my_index].from = EncodeIndex(dims, other) | |
253 | } | |
254 | } | |
255 | other[Location] = addr[Location] | |
256 | other[Fuel] = addr[Fuel] | |
257 | } | |
258 | ||
259 | /* Travel here via a hidey hole */ | |
260 | if addr[Fuel] + 1 < dims[Fuel] { | |
261 | hole_index := (dims[Fuel] - 1) - (addr[Fuel] + 1) | |
262 | if hole_index < len(flight_plan()) { | |
263 | other[Fuel] = addr[Fuel] + 1 | |
264 | other[Location] = data.p2i[flight_plan()[hole_index]] | |
265 | if table[EncodeIndex(dims, other)].value > table[my_index].value { | |
266 | table[my_index].value = table[EncodeIndex(dims, other)].value | |
267 | table[my_index].from = EncodeIndex(dims, other) | |
268 | } | |
269 | other[Fuel] = addr[Fuel] | |
270 | } | |
271 | } | |
272 | ||
273 | /* Travel here via Eden Warp Unit */ | |
274 | /* Silly: Dump Eden warp units */ | |
275 | /* Buy Eden warp units */ | |
276 | /* Buy a Device of Cloaking */ | |
277 | /* Silly: Dump a Device of Cloaking */ | |
278 | /* Buy Fighter Drones */ | |
279 | /* Buy Shield Batteries */ | |
280 | if addr[Hold] == 0 { | |
281 | /* Sell or dump things */ | |
282 | // for commodity := range data.Commodities { } | |
283 | } else { | |
284 | /* Buy this thing */ | |
285 | } | |
286 | /* Visit this planet */ | |
287 | } | |
288 | ||
289 | func FillStateTable2(data planet_data, dims []int, table []State, | |
290 | fuel_remaining, edens_remaining int, planet string, barrier chan<- bool) { | |
291 | /* The dimension nesting order up to this point is important. | |
292 | * Beyond this point, it's not important. | |
293 | * | |
294 | * It is very important when iterating through the Hold dimension | |
295 | * to visit the null commodity (empty hold) first. Visiting the | |
296 | * null commodity represents selling. Visiting it first gets the | |
297 | * action order correct: arrive, sell, buy, leave. Visiting the | |
298 | * null commodity after another commodity would evaluate the action | |
299 | * sequence: arrive, buy, sell, leave. This is a useless action | |
300 | * sequence. Because we visit the null commodity first, we do not | |
301 | * consider these action sequences. | |
302 | */ | |
303 | eden_capacity := data.Commodities["Eden Warp Units"].Limit | |
304 | addr := make([]int, len(dims)) | |
305 | addr[Edens] = edens_remaining | |
306 | addr[Fuel] = fuel_remaining | |
307 | addr[Location] = data.p2i[planet] | |
308 | for addr[Hold] = 0; addr[Hold] < dims[Hold]; addr[Hold]++ { | |
309 | for addr[Cloaks] = 0; addr[Cloaks] < dims[Cloaks]; addr[Cloaks]++ { | |
310 | for addr[UnusedCargo] = 0; addr[UnusedCargo] < dims[UnusedCargo]; addr[UnusedCargo]++ { | |
311 | if addr[Edens]+addr[Cloaks]+addr[UnusedCargo] <= | |
312 | eden_capacity+1 { | |
313 | for addr[NeedFighters] = 0; addr[NeedFighters] < dims[NeedFighters]; addr[NeedFighters]++ { | |
314 | for addr[NeedShields] = 0; addr[NeedShields] < dims[NeedShields]; addr[NeedShields]++ { | |
315 | for addr[Visit] = 0; addr[Visit] < dims[Visit]; addr[Visit]++ { | |
316 | FillStateTableCell(data, dims, table, addr) | |
317 | } | |
318 | } | |
319 | } | |
320 | } | |
321 | } | |
322 | } | |
323 | } | |
324 | barrier <- true | |
325 | } | |
326 | ||
327 | /* Filling the state table is a set of nested for loops NumDimensions deep. | |
328 | * We split this into two procedures: 1 and 2. #1 is the outer, slowest- | |
329 | * changing indexes. #1 fires off many calls to #2 that run in parallel. | |
330 | * The order of the nesting of the dimensions, the order of iteration within | |
331 | * each dimension, and where the 1 / 2 split is placed are carefully chosen | |
332 | * to make this arrangement safe. | |
333 | * | |
334 | * Outermost two layers: Go from high-energy states (lots of fuel, edens) to | |
335 | * low-energy state. These must be processed sequentially and in this order | |
336 | * because you travel through high-energy states to get to the low-energy | |
337 | * states. | |
338 | * | |
339 | * Third layer: Planet. This is a good layer to parallelize on. There's | |
340 | * high enough cardinality that we don't have to mess with parallelizing | |
341 | * multiple layers for good utilization (on 2011 machines). Each thread | |
342 | * works on one planet's states and need not synchronize with peer threads. | |
343 | */ | |
344 | func FillStateTable1(data planet_data, dims []int, table []State) { | |
345 | barrier := make(chan bool, len(data.Planets)) | |
346 | eden_capacity := data.Commodities["Eden Warp Units"].Limit | |
347 | work_units := (float64(*fuel) + 1) * (float64(eden_capacity) + 1) | |
348 | work_done := 0.0 | |
349 | for fuel_remaining := *fuel; fuel_remaining >= 0; fuel_remaining-- { | |
350 | for edens_remaining := eden_capacity; edens_remaining >= 0; edens_remaining-- { | |
351 | for planet := range data.Planets { | |
352 | go FillStateTable2(data, dims, table, fuel_remaining, | |
353 | edens_remaining, planet, barrier) | |
354 | } | |
355 | for _ = range data.Planets { | |
356 | <-barrier | |
357 | } | |
358 | work_done++ | |
359 | fmt.Printf("\r%3.0f%%", 100*work_done/work_units) | |
360 | } | |
361 | } | |
362 | print("\n") | |
363 | } | |
364 | ||
365 | /* What is the value of hauling 'commodity' from 'from' to 'to'? | |
366 | * Take into account the available funds and the available cargo space. */ | |
367 | func TradeValue(data planet_data, | |
368 | from, to Planet, | |
369 | commodity string, | |
370 | initial_funds, max_quantity int) int { | |
371 | if !data.Commodities[commodity].CanSell { | |
372 | return 0 | |
373 | } | |
374 | from_relative_price, from_available := from.RelativePrices[commodity] | |
375 | if !from_available { | |
376 | return 0 | |
377 | } | |
378 | to_relative_price, to_available := to.RelativePrices[commodity] | |
379 | if !to_available { | |
380 | return 0 | |
381 | } | |
382 | ||
383 | base_price := data.Commodities[commodity].BasePrice | |
384 | from_absolute_price := from_relative_price * base_price | |
385 | to_absolute_price := to_relative_price * base_price | |
386 | buy_price := from_absolute_price | |
387 | sell_price := int(float64(to_absolute_price) * 0.9) | |
388 | var can_afford int = initial_funds / buy_price | |
389 | quantity := can_afford | |
390 | if quantity > max_quantity { | |
391 | quantity = max_quantity | |
392 | } | |
393 | return (sell_price - buy_price) * max_quantity | |
394 | } | |
395 | ||
396 | func FindBestTrades(data planet_data) [][]string { | |
397 | // TODO: We can't cache this because this can change based on available funds. | |
398 | best := make([][]string, len(data.Planets)) | |
399 | for from := range data.Planets { | |
400 | best[data.p2i[from]] = make([]string, len(data.Planets)) | |
401 | for to := range data.Planets { | |
402 | best_gain := 0 | |
403 | price_list := data.Planets[from].RelativePrices | |
404 | if len(data.Planets[to].RelativePrices) < len(data.Planets[from].RelativePrices) { | |
405 | price_list = data.Planets[to].RelativePrices | |
406 | } | |
407 | for commodity := range price_list { | |
408 | gain := TradeValue(data, | |
409 | data.Planets[from], | |
410 | data.Planets[to], | |
411 | commodity, | |
412 | 10000000, | |
413 | 1) | |
414 | if gain > best_gain { | |
415 | best[data.p2i[from]][data.p2i[to]] = commodity | |
416 | gain = best_gain | |
417 | } | |
418 | } | |
419 | } | |
420 | } | |
421 | return best | |
422 | } | |
423 | ||
424 | // (Example of a use case for generics in Go) | |
425 | func IndexPlanets(m *map[string]Planet, start_at int) (map[string]int, []string) { | |
426 | e2i := make(map[string]int, len(*m)+start_at) | |
427 | i2e := make([]string, len(*m)+start_at) | |
428 | i := start_at | |
429 | for e := range *m { | |
430 | e2i[e] = i | |
431 | i2e[i] = e | |
432 | i++ | |
433 | } | |
434 | return e2i, i2e | |
435 | } | |
436 | func IndexCommodities(m *map[string]Commodity, start_at int) (map[string]int, []string) { | |
437 | e2i := make(map[string]int, len(*m)+start_at) | |
438 | i2e := make([]string, len(*m)+start_at) | |
439 | i := start_at | |
440 | for e := range *m { | |
441 | e2i[e] = i | |
442 | i2e[i] = e | |
443 | i++ | |
444 | } | |
445 | return e2i, i2e | |
446 | } | |
447 | ||
448 | func main() { | |
449 | flag.Parse() | |
450 | data := ReadData() | |
451 | data.p2i, data.i2p = IndexPlanets(&data.Planets, 0) | |
452 | data.c2i, data.i2c = IndexCommodities(&data.Commodities, 1) | |
453 | dims := DimensionSizes(data) | |
454 | table := make([]State, StateTableSize(dims)) | |
455 | InitializeStateTable(data, dims, table) | |
456 | FillStateTable1(data, dims, table) | |
457 | print("Going to print state table...") | |
458 | fmt.Printf("%v", table) | |
459 | best_trades := FindBestTrades(data) | |
460 | ||
461 | for from := range data.Planets { | |
462 | for to := range data.Planets { | |
463 | best_trade := "(nothing)" | |
464 | if best_trades[data.p2i[from]][data.p2i[to]] != "" { | |
465 | best_trade = best_trades[data.p2i[from]][data.p2i[to]] | |
466 | } | |
467 | fmt.Printf("%s to %s: %s\n", from, to, best_trade) | |
468 | } | |
469 | } | |
470 | } |