]>
Commit | Line | Data |
---|---|---|
1 | /* Planeteer: Give trade route advice for Planets: The Exploration of Space | |
2 | * Copyright (C) 2011 Scott Worley <sworley@chkno.net> | |
3 | * | |
4 | * This program is free software: you can redistribute it and/or modify | |
5 | * it under the terms of the GNU Affero General Public License as | |
6 | * published by the Free Software Foundation, either version 3 of the | |
7 | * License, or (at your option) any later version. | |
8 | * | |
9 | * This program is distributed in the hope that it will be useful, | |
10 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
11 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
12 | * GNU Affero General Public License for more details. | |
13 | * | |
14 | * You should have received a copy of the GNU Affero General Public License | |
15 | * along with this program. If not, see <http://www.gnu.org/licenses/>. | |
16 | */ | |
17 | ||
18 | package main | |
19 | ||
20 | import "flag" | |
21 | import "fmt" | |
22 | import "json" | |
23 | import "os" | |
24 | import "strings" | |
25 | ||
26 | var funds = flag.Int("funds", 0, | |
27 | "Starting funds") | |
28 | ||
29 | var start = flag.String("start", "", | |
30 | "The planet to start at") | |
31 | ||
32 | var flight_plan_string = flag.String("flight_plan", "", | |
33 | "Your hidey-holes for the day, comma-separated.") | |
34 | ||
35 | var end = flag.String("end", "", | |
36 | "A comma-separated list of acceptable ending planets.") | |
37 | ||
38 | var planet_data_file = flag.String("planet_data_file", "planet-data", | |
39 | "The file to read planet data from") | |
40 | ||
41 | var fuel = flag.Int("fuel", 16, "Reactor units") | |
42 | ||
43 | var hold = flag.Int("hold", 300, "Size of your cargo hold") | |
44 | ||
45 | var start_edens = flag.Int("start_edens", 0, | |
46 | "How many Eden Warp Units are you starting with?") | |
47 | ||
48 | var end_edens = flag.Int("end_edens", 0, | |
49 | "How many Eden Warp Units would you like to keep (not use)?") | |
50 | ||
51 | var cloak = flag.Bool("cloak", false, | |
52 | "Make sure to end with a Device of Cloaking") | |
53 | ||
54 | var drones = flag.Int("drones", 0, "Buy this many Fighter Drones") | |
55 | ||
56 | var batteries = flag.Int("batteries", 0, "Buy this many Shield Batterys") | |
57 | ||
58 | var visit_string = flag.String("visit", "", | |
59 | "A comma-separated list of planets to make sure to visit") | |
60 | ||
61 | func visit() []string { | |
62 | if *visit_string == "" { | |
63 | return []string{} | |
64 | } | |
65 | return strings.Split(*visit_string, ",") | |
66 | } | |
67 | ||
68 | func flight_plan() []string { | |
69 | if *flight_plan_string == "" { | |
70 | return []string{} | |
71 | } | |
72 | return strings.Split(*flight_plan_string, ",") | |
73 | } | |
74 | ||
75 | type Commodity struct { | |
76 | BasePrice int | |
77 | CanSell bool | |
78 | Limit int | |
79 | } | |
80 | type Planet struct { | |
81 | BeaconOn bool | |
82 | /* Use relative prices rather than absolute prices because you | |
83 | can get relative prices without traveling to each planet. */ | |
84 | RelativePrices map[string]int | |
85 | } | |
86 | type planet_data struct { | |
87 | Commodities map[string]Commodity | |
88 | Planets map[string]Planet | |
89 | p2i, c2i map[string]int // Generated; not read from file | |
90 | i2p, i2c []string // Generated; not read from file | |
91 | } | |
92 | ||
93 | func ReadData() (data planet_data) { | |
94 | f, err := os.Open(*planet_data_file) | |
95 | if err != nil { | |
96 | panic(err) | |
97 | } | |
98 | defer f.Close() | |
99 | err = json.NewDecoder(f).Decode(&data) | |
100 | if err != nil { | |
101 | panic(err) | |
102 | } | |
103 | return | |
104 | } | |
105 | ||
106 | /* This program operates by filling in a state table representing the best | |
107 | * possible trips you could make; the ones that makes you the most money. | |
108 | * This is feasible because we don't look at all the possible trips. | |
109 | * We define a list of things that are germane to this game and then only | |
110 | * consider the best outcome in each possible game state. | |
111 | * | |
112 | * Each cell in the table represents a state in the game. In each cell, | |
113 | * we track two things: 1. the most money you could possibly have while in | |
114 | * that state and 2. one possible way to get into that state with that | |
115 | * amount of money. | |
116 | * | |
117 | * A basic analysis can be done with a two-dimensional table: location and | |
118 | * fuel. planeteer-1.0 used this two-dimensional table. This version | |
119 | * adds features mostly by adding dimensions to this table. | |
120 | * | |
121 | * Note that the sizes of each dimension are data driven. Many dimensions | |
122 | * collapse to one possible value (ie, disappear) if the corresponding | |
123 | * feature is not enabled. | |
124 | * | |
125 | * The order of the dimensions in the list of constants below determines | |
126 | * their layout in RAM. The cargo-based 'dimensions' are not completely | |
127 | * independent -- some combinations are illegal and not used. They are | |
128 | * handled as three dimensions rather than one for simplicity. Placing | |
129 | * these dimensions first causes the unused cells in the table to be | |
130 | * grouped together in large blocks. This keeps them from polluting | |
131 | * cache lines, and if they are large enough, prevent the memory manager | |
132 | * from allocating pages for these areas at all. | |
133 | * | |
134 | * If the table gets too big to fit in RAM: | |
135 | * * Combine the Edens, Cloaks, and UnusedCargo dimensions. Of the | |
136 | * 24 combinations, only 15 are legal: a 38% savings. | |
137 | * * Reduce the size of the Fuel dimension to 3. We only ever look | |
138 | * backwards 2 units, so just rotate the logical values through | |
139 | * the same 3 physical addresses. This is good for an 82% savings. | |
140 | * * Reduce the size of the Edens dimension from 3 to 2, for the | |
141 | * same reasons as Fuel above. 33% savings. | |
142 | * * Buy more ram. (Just sayin'. It's cheaper than you think.) | |
143 | * | |
144 | */ | |
145 | ||
146 | // The official list of dimensions: | |
147 | const ( | |
148 | // Name Num Size Description | |
149 | Edens = iota // 1 3 # of Eden warp units (0 - 2 typically) | |
150 | Cloaks // 2 2 # of Devices of Cloaking (0 or 1) | |
151 | UnusedCargo // 3 4 # of unused cargo spaces (0 - 3 typically) | |
152 | Fuel // 4 17 Reactor power left (0 - 16) | |
153 | Location // 5 26 Location (which planet) | |
154 | Hold // 6 15 Cargo bay contents (a *Commodity or nil) | |
155 | NeedFighters // 7 2 Errand: Buy fighter drones (needed or not) | |
156 | NeedShields // 8 2 Errand: Buy shield batteries (needed or not) | |
157 | Visit // 9 2**N Visit: Stop by these N planets in the route | |
158 | ||
159 | NumDimensions | |
160 | ) | |
161 | ||
162 | func bint(b bool) int { | |
163 | if b { | |
164 | return 1 | |
165 | } | |
166 | return 0 | |
167 | } | |
168 | ||
169 | func DimensionSizes(data planet_data) []int { | |
170 | eden_capacity := data.Commodities["Eden Warp Units"].Limit | |
171 | if *start_edens > eden_capacity { | |
172 | eden_capacity = *start_edens | |
173 | } | |
174 | cloak_capacity := bint(*cloak) | |
175 | dims := make([]int, NumDimensions) | |
176 | dims[Edens] = eden_capacity + 1 | |
177 | dims[Cloaks] = cloak_capacity + 1 | |
178 | dims[UnusedCargo] = eden_capacity + cloak_capacity + 1 | |
179 | dims[Fuel] = *fuel + 1 | |
180 | dims[Location] = len(data.Planets) | |
181 | dims[Hold] = len(data.Commodities) | |
182 | dims[NeedFighters] = bint(*drones > 0) + 1 | |
183 | dims[NeedShields] = bint(*batteries > 0) + 1 | |
184 | dims[Visit] = 1 << uint(len(visit())) | |
185 | ||
186 | // Remind myself to add a line above when adding new dimensions | |
187 | for i, dim := range dims { | |
188 | if dim < 1 { | |
189 | panic(i) | |
190 | } | |
191 | } | |
192 | return dims | |
193 | } | |
194 | ||
195 | func StateTableSize(dims []int) int { | |
196 | product := 1 | |
197 | for _, size := range dims { | |
198 | product *= size | |
199 | } | |
200 | return product | |
201 | } | |
202 | ||
203 | type State struct { | |
204 | value, from int | |
205 | } | |
206 | ||
207 | func EncodeIndex(dims, addr []int) int { | |
208 | index := addr[0] | |
209 | if addr[0] > dims[0] { | |
210 | panic(0) | |
211 | } | |
212 | for i := 1; i < NumDimensions; i++ { | |
213 | if addr[i] > dims[i] { | |
214 | panic(i) | |
215 | } | |
216 | index = index*dims[i] + addr[i] | |
217 | } | |
218 | return index | |
219 | } | |
220 | ||
221 | func DecodeIndex(dims []int, index int) []int { | |
222 | addr := make([]int, NumDimensions) | |
223 | for i := NumDimensions - 1; i > 0; i-- { | |
224 | addr[i] = index % dims[i] | |
225 | index /= dims[i] | |
226 | } | |
227 | addr[0] = index | |
228 | return addr | |
229 | } | |
230 | ||
231 | func InitializeStateTable(data planet_data, dims []int) []State { | |
232 | table := make([]State, StateTableSize(dims)) | |
233 | ||
234 | addr := make([]int, NumDimensions) | |
235 | addr[Fuel] = *fuel | |
236 | addr[Edens] = *start_edens | |
237 | addr[Location] = data.p2i[*start] | |
238 | table[EncodeIndex(dims, addr)].value = *funds | |
239 | ||
240 | return table | |
241 | } | |
242 | ||
243 | /* These four fill procedures fill in the cell at address addr by | |
244 | * looking at all the possible ways to reach this cell and selecting | |
245 | * the best one. | |
246 | * | |
247 | * The other obvious implementation choice is to do this the other way | |
248 | * around -- for each cell, conditionally overwrite all the other cells | |
249 | * that are reachable *from* the considered cell. We choose gathering | |
250 | * reads over scattering writes to avoid having to take a bunch of locks. | |
251 | */ | |
252 | ||
253 | func UpdateCell(table []State, here, there, value_difference int) { | |
254 | possible_value := table[there].value + value_difference | |
255 | if table[there].value > 0 && possible_value > table[here].value { | |
256 | table[here].value = possible_value | |
257 | table[here].from = there | |
258 | } | |
259 | } | |
260 | ||
261 | func FillCellByArriving(data planet_data, dims []int, table []State, addr []int) { | |
262 | my_index := EncodeIndex(dims, addr) | |
263 | other := make([]int, NumDimensions) | |
264 | copy(other, addr) | |
265 | ||
266 | /* Travel here via a 2-fuel unit jump */ | |
267 | if addr[Fuel]+2 < dims[Fuel] { | |
268 | other[Fuel] = addr[Fuel] + 2 | |
269 | for other[Location] = 0; other[Location] < dims[Location]; other[Location]++ { | |
270 | UpdateCell(table, my_index, EncodeIndex(dims, other), 0) | |
271 | } | |
272 | other[Location] = addr[Location] | |
273 | other[Fuel] = addr[Fuel] | |
274 | } | |
275 | ||
276 | /* Travel here via a hidey hole */ | |
277 | if addr[Fuel]+1 < dims[Fuel] { | |
278 | hole_index := (dims[Fuel] - 1) - (addr[Fuel] + 1) | |
279 | if hole_index < len(flight_plan()) { | |
280 | other[Fuel] = addr[Fuel] + 1 | |
281 | other[Location] = data.p2i[flight_plan()[hole_index]] | |
282 | UpdateCell(table, my_index, EncodeIndex(dims, other), 0) | |
283 | other[Location] = addr[Location] | |
284 | other[Fuel] = addr[Fuel] | |
285 | } | |
286 | } | |
287 | ||
288 | /* Travel here via Eden Warp Unit */ | |
289 | for other[Edens] = addr[Edens] + 1; other[Edens] < dims[Edens]; other[Edens]++ { | |
290 | for other[Location] = 0; other[Location] < dims[Location]; other[Location]++ { | |
291 | UpdateCell(table, my_index, EncodeIndex(dims, other), 0) | |
292 | } | |
293 | } | |
294 | other[Location] = addr[Location] | |
295 | other[Edens] = addr[Edens] | |
296 | } | |
297 | ||
298 | func FillCellBySelling(data planet_data, dims []int, table []State, addr []int) { | |
299 | if addr[Hold] > 0 { | |
300 | // Can't sell and still have cargo | |
301 | return | |
302 | } | |
303 | if addr[UnusedCargo] > 0 { | |
304 | // Can't sell everything and still have 'unused' holds | |
305 | return | |
306 | } | |
307 | my_index := EncodeIndex(dims, addr) | |
308 | other := make([]int, NumDimensions) | |
309 | copy(other, addr) | |
310 | planet := data.i2p[addr[Location]] | |
311 | for other[Hold] = 0; other[Hold] < dims[Hold]; other[Hold]++ { | |
312 | commodity := data.i2c[other[Hold]] | |
313 | if !data.Commodities[commodity].CanSell { | |
314 | // TODO: Dump cargo | |
315 | continue | |
316 | } | |
317 | relative_price, available := data.Planets[planet].RelativePrices[commodity] | |
318 | if !available { | |
319 | continue | |
320 | } | |
321 | base_price := data.Commodities[commodity].BasePrice | |
322 | absolute_price := relative_price * base_price | |
323 | sell_price := int(float64(absolute_price) * 0.9) | |
324 | ||
325 | for other[UnusedCargo] = 0; other[UnusedCargo] < dims[UnusedCargo]; other[UnusedCargo]++ { | |
326 | ||
327 | quantity := *hold - other[UnusedCargo] // TODO: Partial sales | |
328 | sale_value := quantity * sell_price | |
329 | UpdateCell(table, my_index, EncodeIndex(dims, other), sale_value) | |
330 | } | |
331 | } | |
332 | other[UnusedCargo] = addr[UnusedCargo] | |
333 | } | |
334 | ||
335 | func FillCellByBuying(data planet_data, dims []int, table []State, addr []int) { | |
336 | if addr[Hold] == 0 { | |
337 | // Can't buy and then have nothing | |
338 | return | |
339 | } | |
340 | my_index := EncodeIndex(dims, addr) | |
341 | other := make([]int, NumDimensions) | |
342 | copy(other, addr) | |
343 | planet := data.i2p[addr[Location]] | |
344 | commodity := data.i2c[addr[Hold]] | |
345 | if !data.Commodities[commodity].CanSell { | |
346 | return | |
347 | } | |
348 | relative_price, available := data.Planets[planet].RelativePrices[commodity] | |
349 | if !available { | |
350 | return | |
351 | } | |
352 | base_price := data.Commodities[commodity].BasePrice | |
353 | absolute_price := relative_price * base_price | |
354 | quantity := *hold - addr[UnusedCargo] | |
355 | total_price := quantity * absolute_price | |
356 | other[Hold] = 0 | |
357 | UpdateCell(table, my_index, EncodeIndex(dims, other), -total_price) | |
358 | } | |
359 | ||
360 | func FillCellByMisc(data planet_data, dims []int, table []State, addr []int) { | |
361 | /* Buy Eden warp units */ | |
362 | /* Buy a Device of Cloaking */ | |
363 | /* Silly: Dump a Device of Cloaking */ | |
364 | /* Buy Fighter Drones */ | |
365 | /* Buy Shield Batteries */ | |
366 | /* Visit this planet */ | |
367 | } | |
368 | ||
369 | func FillStateTable2Iteration(data planet_data, dims []int, table []State, | |
370 | addr []int, f func(planet_data, []int, []State, []int)) { | |
371 | /* TODO: Justify the safety of the combination of this dimension | |
372 | * iteration and the various phases f. */ | |
373 | for addr[Hold] = 0; addr[Hold] < dims[Hold]; addr[Hold]++ { | |
374 | for addr[Cloaks] = 0; addr[Cloaks] < dims[Cloaks]; addr[Cloaks]++ { | |
375 | for addr[UnusedCargo] = 0; addr[UnusedCargo] < dims[UnusedCargo]; addr[UnusedCargo]++ { | |
376 | for addr[NeedFighters] = 0; addr[NeedFighters] < dims[NeedFighters]; addr[NeedFighters]++ { | |
377 | for addr[NeedShields] = 0; addr[NeedShields] < dims[NeedShields]; addr[NeedShields]++ { | |
378 | for addr[Visit] = 0; addr[Visit] < dims[Visit]; addr[Visit]++ { | |
379 | f(data, dims, table, addr) | |
380 | } | |
381 | } | |
382 | } | |
383 | } | |
384 | } | |
385 | } | |
386 | } | |
387 | ||
388 | func FillStateTable2(data planet_data, dims []int, table []State, | |
389 | fuel_remaining, edens_remaining int, planet string, barrier chan<- bool) { | |
390 | addr := make([]int, len(dims)) | |
391 | addr[Edens] = edens_remaining | |
392 | addr[Fuel] = fuel_remaining | |
393 | addr[Location] = data.p2i[planet] | |
394 | FillStateTable2Iteration(data, dims, table, addr, FillCellByArriving) | |
395 | FillStateTable2Iteration(data, dims, table, addr, FillCellBySelling) | |
396 | FillStateTable2Iteration(data, dims, table, addr, FillCellByBuying) | |
397 | FillStateTable2Iteration(data, dims, table, addr, FillCellByMisc) | |
398 | barrier <- true | |
399 | } | |
400 | ||
401 | /* Filling the state table is a set of nested for loops NumDimensions deep. | |
402 | * We split this into two procedures: 1 and 2. #1 is the outer, slowest- | |
403 | * changing indexes. #1 fires off many calls to #2 that run in parallel. | |
404 | * The order of the nesting of the dimensions, the order of iteration within | |
405 | * each dimension, and where the 1 / 2 split is placed are carefully chosen | |
406 | * to make this arrangement safe. | |
407 | * | |
408 | * Outermost two layers: Go from high-energy states (lots of fuel, edens) to | |
409 | * low-energy state. These must be processed sequentially and in this order | |
410 | * because you travel through high-energy states to get to the low-energy | |
411 | * states. | |
412 | * | |
413 | * Third layer: Planet. This is a good layer to parallelize on. There's | |
414 | * high enough cardinality that we don't have to mess with parallelizing | |
415 | * multiple layers for good utilization (on 2011 machines). Each thread | |
416 | * works on one planet's states and need not synchronize with peer threads. | |
417 | */ | |
418 | func FillStateTable1(data planet_data, dims []int, table []State) { | |
419 | barrier := make(chan bool, len(data.Planets)) | |
420 | eden_capacity := data.Commodities["Eden Warp Units"].Limit | |
421 | work_units := (float64(*fuel) + 1) * (float64(eden_capacity) + 1) | |
422 | work_done := 0.0 | |
423 | for fuel_remaining := *fuel; fuel_remaining >= 0; fuel_remaining-- { | |
424 | for edens_remaining := eden_capacity; edens_remaining >= 0; edens_remaining-- { | |
425 | for planet := range data.Planets { | |
426 | go FillStateTable2(data, dims, table, fuel_remaining, | |
427 | edens_remaining, planet, barrier) | |
428 | } | |
429 | for _ = range data.Planets { | |
430 | <-barrier | |
431 | } | |
432 | work_done++ | |
433 | fmt.Printf("\r%3.0f%%", 100*work_done/work_units) | |
434 | } | |
435 | } | |
436 | print("\n") | |
437 | } | |
438 | ||
439 | func FindBestState(data planet_data, dims []int, table []State) int { | |
440 | addr := make([]int, NumDimensions) | |
441 | addr[Edens] = *end_edens | |
442 | addr[Cloaks] = dims[Cloaks] - 1 | |
443 | addr[NeedFighters] = dims[NeedFighters] - 1 | |
444 | addr[NeedShields] = dims[NeedShields] - 1 | |
445 | addr[Visit] = dims[Visit] - 1 | |
446 | // Fuel, Hold, UnusedCargo left at 0 | |
447 | var max_index int | |
448 | max_value := 0 | |
449 | for addr[Location] = 0; addr[Location] < dims[Location]; addr[Location]++ { | |
450 | index := EncodeIndex(dims, addr) | |
451 | if table[index].value > max_value { | |
452 | max_value = table[index].value | |
453 | max_index = index | |
454 | } | |
455 | } | |
456 | return max_index | |
457 | } | |
458 | ||
459 | // (Example of a use case for generics in Go) | |
460 | func IndexPlanets(m *map[string]Planet, start_at int) (map[string]int, []string) { | |
461 | e2i := make(map[string]int, len(*m)+start_at) | |
462 | i2e := make([]string, len(*m)+start_at) | |
463 | i := start_at | |
464 | for e := range *m { | |
465 | e2i[e] = i | |
466 | i2e[i] = e | |
467 | i++ | |
468 | } | |
469 | return e2i, i2e | |
470 | } | |
471 | func IndexCommodities(m *map[string]Commodity, start_at int) (map[string]int, []string) { | |
472 | e2i := make(map[string]int, len(*m)+start_at) | |
473 | i2e := make([]string, len(*m)+start_at) | |
474 | i := start_at | |
475 | for e := range *m { | |
476 | e2i[e] = i | |
477 | i2e[i] = e | |
478 | i++ | |
479 | } | |
480 | return e2i, i2e | |
481 | } | |
482 | ||
483 | func main() { | |
484 | flag.Parse() | |
485 | data := ReadData() | |
486 | data.p2i, data.i2p = IndexPlanets(&data.Planets, 0) | |
487 | data.c2i, data.i2c = IndexCommodities(&data.Commodities, 1) | |
488 | dims := DimensionSizes(data) | |
489 | table := InitializeStateTable(data, dims) | |
490 | FillStateTable1(data, dims, table) | |
491 | best := FindBestState(data, dims, table) | |
492 | fmt.Printf("Best state: %v (%v) with $%v\n", | |
493 | best, DecodeIndex(dims, best), table[best].value) | |
494 | } |