]>
Commit | Line | Data |
---|---|---|
1 | /* Planeteer: Give trade route advice for Planets: The Exploration of Space | |
2 | * Copyright (C) 2011 Scott Worley <sworley@chkno.net> | |
3 | * | |
4 | * This program is free software: you can redistribute it and/or modify | |
5 | * it under the terms of the GNU Affero General Public License as | |
6 | * published by the Free Software Foundation, either version 3 of the | |
7 | * License, or (at your option) any later version. | |
8 | * | |
9 | * This program is distributed in the hope that it will be useful, | |
10 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
11 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
12 | * GNU Affero General Public License for more details. | |
13 | * | |
14 | * You should have received a copy of the GNU Affero General Public License | |
15 | * along with this program. If not, see <http://www.gnu.org/licenses/>. | |
16 | */ | |
17 | ||
18 | package main | |
19 | ||
20 | import "flag" | |
21 | import "fmt" | |
22 | import "json" | |
23 | import "os" | |
24 | import "strings" | |
25 | ||
26 | var start = flag.String("start", "", | |
27 | "The planet to start at") | |
28 | ||
29 | var flight_plan = flag.String("flight_plan", "", | |
30 | "Your hidey-holes for the day, comma-separated.") | |
31 | ||
32 | var end = flag.String("end", "", | |
33 | "A comma-separated list of acceptable ending planets.") | |
34 | ||
35 | var planet_data_file = flag.String("planet_data_file", "planet-data", | |
36 | "The file to read planet data from") | |
37 | ||
38 | var fuel = flag.Int("fuel", 16, "Reactor units") | |
39 | ||
40 | var hold = flag.Int("hold", 300, "Size of your cargo hold") | |
41 | ||
42 | var start_edens = flag.Int("start_edens", 0, | |
43 | "How many Eden Warp Units are you starting with?") | |
44 | ||
45 | var end_edens = flag.Int("end_edens", 0, | |
46 | "How many Eden Warp Units would you like to keep (not use)?") | |
47 | ||
48 | var cloak = flag.Bool("cloak", false, | |
49 | "Make sure to end with a Device of Cloaking") | |
50 | ||
51 | var drones = flag.Int("drones", 0, "Buy this many Fighter Drones") | |
52 | ||
53 | var batteries = flag.Int("batteries", 0, "Buy this many Shield Batterys") | |
54 | ||
55 | var visit_string = flag.String("visit", "", | |
56 | "A comma-separated list of planets to make sure to visit") | |
57 | ||
58 | func visit() []string { | |
59 | return strings.Split(*visit_string, ",") | |
60 | } | |
61 | ||
62 | type Commodity struct { | |
63 | BasePrice int | |
64 | CanSell bool | |
65 | Limit int | |
66 | } | |
67 | type Planet struct { | |
68 | BeaconOn bool | |
69 | /* Use relative prices rather than absolute prices because you | |
70 | can get relative prices without traveling to each planet. */ | |
71 | RelativePrices map[string]int | |
72 | } | |
73 | type planet_data struct { | |
74 | Commodities map[string]Commodity | |
75 | Planets map[string]Planet | |
76 | p2i, c2i map[string]int // Generated; not read from file | |
77 | i2p, i2c []string // Generated; not read from file | |
78 | } | |
79 | ||
80 | func ReadData() (data planet_data) { | |
81 | f, err := os.Open(*planet_data_file) | |
82 | if err != nil { | |
83 | panic(err) | |
84 | } | |
85 | defer f.Close() | |
86 | err = json.NewDecoder(f).Decode(&data) | |
87 | if err != nil { | |
88 | panic(err) | |
89 | } | |
90 | return | |
91 | } | |
92 | ||
93 | /* This program operates by filling in a state table representing the best | |
94 | * possible trips you could make; the ones that makes you the most money. | |
95 | * This is feasible because we don't look at all the possible trips. | |
96 | * We define a list of things that are germane to this game and then only | |
97 | * consider the best outcome in each possible game state. | |
98 | * | |
99 | * Each cell in the table represents a state in the game. In each cell, | |
100 | * we track two things: 1. the most money you could possibly have while in | |
101 | * that state and 2. one possible way to get into that state with that | |
102 | * amount of money. | |
103 | * | |
104 | * A basic analysis can be done with a two-dimensional table: location and | |
105 | * fuel. planeteer-1.0 used this two-dimensional table. This version | |
106 | * adds features mostly by adding dimensions to this table. | |
107 | * | |
108 | * Note that the sizes of each dimension are data driven. Many dimensions | |
109 | * collapse to one possible value (ie, disappear) if the corresponding | |
110 | * feature is not enabled. | |
111 | * | |
112 | * The order of the dimensions in the list of constants below determines | |
113 | * their layout in RAM. The cargo-based 'dimensions' are not completely | |
114 | * independent -- some combinations are illegal and not used. They are | |
115 | * handled as three dimensions rather than one for simplicity. Placing | |
116 | * these dimensions first causes the unused cells in the table to be | |
117 | * grouped together in large blocks. This keeps them from polluting | |
118 | * cache lines, and if they are large enough, prevent the memory manager | |
119 | * from allocating pages for these areas at all. | |
120 | */ | |
121 | ||
122 | // The official list of dimensions: | |
123 | const ( | |
124 | // Name Num Size Description | |
125 | Edens = iota // 1 3 # of Eden warp units (0 - 2 typically) | |
126 | Cloaks // 2 2 # of Devices of Cloaking (0 or 1) | |
127 | UnusedCargo // 3 4 # of unused cargo spaces (0 - 3 typically) | |
128 | Fuel // 4 17 Reactor power left (0 - 16) | |
129 | Location // 5 26 Location (which planet) | |
130 | Hold // 6 15 Cargo bay contents (a *Commodity or nil) | |
131 | NeedFighters // 7 2 Errand: Buy fighter drones (needed or not) | |
132 | NeedShields // 8 2 Errand: Buy shield batteries (needed or not) | |
133 | Visit // 9 2**N Visit: Stop by these N planets in the route | |
134 | ||
135 | NumDimensions | |
136 | ) | |
137 | ||
138 | func bint(b bool) int { | |
139 | if b { | |
140 | return 1 | |
141 | } | |
142 | return 0 | |
143 | } | |
144 | ||
145 | func DimensionSizes(data planet_data) []int { | |
146 | eden_capacity := data.Commodities["Eden Warp Units"].Limit | |
147 | cloak_capacity := bint(*cloak) | |
148 | dims := make([]int, NumDimensions) | |
149 | dims[Edens] = eden_capacity + 1 | |
150 | dims[Cloaks] = cloak_capacity + 1 | |
151 | dims[UnusedCargo] = eden_capacity + cloak_capacity + 1 | |
152 | dims[Fuel] = *fuel + 1 | |
153 | dims[Location] = len(data.Planets) | |
154 | dims[Hold] = len(data.Commodities) | |
155 | dims[NeedFighters] = bint(*drones > 0) + 1 | |
156 | dims[NeedShields] = bint(*batteries > 0) + 1 | |
157 | dims[Visit] = 1 << uint(len(visit())) | |
158 | ||
159 | // Remind myself to add a line above when adding new dimensions | |
160 | for i, dim := range dims { | |
161 | if dim < 1 { | |
162 | panic(i) | |
163 | } | |
164 | } | |
165 | return dims | |
166 | } | |
167 | ||
168 | func StateTableSize(dims []int) int { | |
169 | sum := 0 | |
170 | for _, size := range dims { | |
171 | sum += size | |
172 | } | |
173 | return sum | |
174 | } | |
175 | ||
176 | type State struct { | |
177 | value, from int | |
178 | } | |
179 | ||
180 | func EncodeIndex(dims, addr []int) int { | |
181 | index := addr[0] | |
182 | for i := 1; i < len(dims); i++ { | |
183 | index = index*dims[i] + addr[i] | |
184 | } | |
185 | return index | |
186 | } | |
187 | ||
188 | func DecodeIndex(dims []int, index int) []int { | |
189 | addr := make([]int, len(dims)) | |
190 | for i := len(dims) - 1; i > 0; i-- { | |
191 | addr[i] = index % dims[i] | |
192 | index /= dims[i] | |
193 | } | |
194 | addr[0] = index | |
195 | return addr | |
196 | } | |
197 | ||
198 | /* Fill in the cell at address addr by looking at all the possible ways | |
199 | * to reach this cell and selecting the best one. | |
200 | * | |
201 | * The other obvious implementation choice is to do this the other way | |
202 | * around -- for each cell, conditionally overwrite all the other cells | |
203 | * that are reachable *from* the considered cell. We choose gathering | |
204 | * reads over scattering writes to avoid having to take a bunch of locks. | |
205 | * | |
206 | * The order that we check things here matters only for value ties. We | |
207 | * keep the first best path. So when action order doesn't matter, the | |
208 | * check that is performed first here will appear in the output first. | |
209 | */ | |
210 | func FillStateTableCell(data planet_data, dims []int, table []State, addr []int) { | |
211 | /* Travel here via jumping */ | |
212 | /* Travel here via Eden Warp Unit */ | |
213 | /* Silly: Dump Eden warp units */ | |
214 | /* Buy Eden warp units */ | |
215 | /* Buy a Device of Cloaking */ | |
216 | /* Silly: Dump a Device of Cloaking */ | |
217 | /* Buy Fighter Drones */ | |
218 | /* Buy Shield Batteries */ | |
219 | if addr[Hold] == 0 { | |
220 | /* Sell or dump things */ | |
221 | for commodity := range data.Commodities { | |
222 | } | |
223 | } else { | |
224 | /* Buy this thing */ | |
225 | } | |
226 | /* Visit this planet */ | |
227 | } | |
228 | ||
229 | func FillStateTable2(data planet_data, dims []int, table []State, | |
230 | fuel_remaining, edens_remaining int, planet string, barrier chan<- bool) { | |
231 | /* The dimension nesting order up to this point is important. | |
232 | * Beyond this point, it's not important. | |
233 | * | |
234 | * It is very important when iterating through the Hold dimension | |
235 | * to visit the null commodity (empty hold) first. Visiting the | |
236 | * null commodity represents selling. Visiting it first gets the | |
237 | * action order correct: arrive, sell, buy, leave. Visiting the | |
238 | * null commodity after another commodity would evaluate the action | |
239 | * sequence: arrive, buy, sell, leave. This is a useless action | |
240 | * sequence. Because we visit the null commodity first, we do not | |
241 | * consider these action sequences. | |
242 | */ | |
243 | eden_capacity := data.Commodities["Eden Warp Units"].Limit | |
244 | addr := make([]int, len(dims)) | |
245 | addr[Edens] = edens_remaining | |
246 | addr[Fuel] = fuel_remaining | |
247 | addr[Location] = data.p2i[planet] | |
248 | for addr[Hold] = 0; addr[Hold] < dims[Hold]; addr[Hold]++ { | |
249 | for addr[Cloaks] = 0; addr[Cloaks] < dims[Cloaks]; addr[Cloaks]++ { | |
250 | for addr[UnusedCargo] = 0; addr[UnusedCargo] < dims[UnusedCargo]; addr[UnusedCargo]++ { | |
251 | if addr[Edens]+addr[Cloaks]+addr[UnusedCargo] <= | |
252 | eden_capacity+1 { | |
253 | for addr[NeedFighters] = 0; addr[NeedFighters] < dims[NeedFighters]; addr[NeedFighters]++ { | |
254 | for addr[NeedShields] = 0; addr[NeedShields] < dims[NeedShields]; addr[NeedShields]++ { | |
255 | for addr[Visit] = 0; addr[Visit] < dims[Visit]; addr[Visit]++ { | |
256 | FillStateTableCell(data, dims, table, addr) | |
257 | } | |
258 | } | |
259 | } | |
260 | } | |
261 | } | |
262 | } | |
263 | } | |
264 | barrier <- true | |
265 | } | |
266 | ||
267 | /* Filling the state table is a set of nested for loops NumDimensions deep. | |
268 | * We split this into two procedures: 1 and 2. #1 is the outer, slowest- | |
269 | * changing indexes. #1 fires off many calls to #2 that run in parallel. | |
270 | * The order of the nesting of the dimensions, the order of iteration within | |
271 | * each dimension, and where the 1 / 2 split is placed are carefully chosen | |
272 | * to make this arrangement safe. | |
273 | * | |
274 | * Outermost two layers: Go from high-energy states (lots of fuel, edens) to | |
275 | * low-energy state. These must be processed sequentially and in this order | |
276 | * because you travel through high-energy states to get to the low-energy | |
277 | * states. | |
278 | * | |
279 | * Third layer: Planet. This is a good layer to parallelize on. There's | |
280 | * high enough cardinality that we don't have to mess with parallelizing | |
281 | * multiple layers for good utilization (on 2011 machines). Each thread | |
282 | * works on one planet's states and need not synchronize with peer threads. | |
283 | */ | |
284 | func FillStateTable1(data planet_data, dims []int) []State { | |
285 | table := make([]State, StateTableSize(dims)) | |
286 | barrier := make(chan bool, len(data.Planets)) | |
287 | eden_capacity := data.Commodities["Eden Warp Units"].Limit | |
288 | work_units := (float64(*fuel) + 1) * (float64(eden_capacity) + 1) | |
289 | work_done := 0.0 | |
290 | for fuel_remaining := *fuel; fuel_remaining >= 0; fuel_remaining-- { | |
291 | for edens_remaining := eden_capacity; edens_remaining >= 0; edens_remaining-- { | |
292 | for planet := range data.Planets { | |
293 | go FillStateTable2(data, dims, table, fuel_remaining, | |
294 | edens_remaining, planet, barrier) | |
295 | } | |
296 | for _ = range data.Planets { | |
297 | <-barrier | |
298 | } | |
299 | work_done++ | |
300 | fmt.Printf("\r%3.0f%%", 100*work_done/work_units) | |
301 | } | |
302 | } | |
303 | return table | |
304 | } | |
305 | ||
306 | /* What is the value of hauling 'commodity' from 'from' to 'to'? | |
307 | * Take into account the available funds and the available cargo space. */ | |
308 | func TradeValue(data planet_data, | |
309 | from, to Planet, | |
310 | commodity string, | |
311 | initial_funds, max_quantity int) int { | |
312 | if !data.Commodities[commodity].CanSell { | |
313 | return 0 | |
314 | } | |
315 | from_relative_price, from_available := from.RelativePrices[commodity] | |
316 | if !from_available { | |
317 | return 0 | |
318 | } | |
319 | to_relative_price, to_available := to.RelativePrices[commodity] | |
320 | if !to_available { | |
321 | return 0 | |
322 | } | |
323 | ||
324 | base_price := data.Commodities[commodity].BasePrice | |
325 | from_absolute_price := from_relative_price * base_price | |
326 | to_absolute_price := to_relative_price * base_price | |
327 | buy_price := from_absolute_price | |
328 | sell_price := int(float64(to_absolute_price) * 0.9) | |
329 | var can_afford int = initial_funds / buy_price | |
330 | quantity := can_afford | |
331 | if quantity > max_quantity { | |
332 | quantity = max_quantity | |
333 | } | |
334 | return (sell_price - buy_price) * max_quantity | |
335 | } | |
336 | ||
337 | func FindBestTrades(data planet_data) [][]string { | |
338 | // TODO: We can't cache this because this can change based on available funds. | |
339 | best := make([][]string, len(data.Planets)) | |
340 | for from := range data.Planets { | |
341 | best[data.p2i[from]] = make([]string, len(data.Planets)) | |
342 | for to := range data.Planets { | |
343 | best_gain := 0 | |
344 | price_list := data.Planets[from].RelativePrices | |
345 | if len(data.Planets[to].RelativePrices) < len(data.Planets[from].RelativePrices) { | |
346 | price_list = data.Planets[to].RelativePrices | |
347 | } | |
348 | for commodity := range price_list { | |
349 | gain := TradeValue(data, | |
350 | data.Planets[from], | |
351 | data.Planets[to], | |
352 | commodity, | |
353 | 10000000, | |
354 | 1) | |
355 | if gain > best_gain { | |
356 | best[data.p2i[from]][data.p2i[to]] = commodity | |
357 | gain = best_gain | |
358 | } | |
359 | } | |
360 | } | |
361 | } | |
362 | return best | |
363 | } | |
364 | ||
365 | // (Example of a use case for generics in Go) | |
366 | func IndexPlanets(m *map[string]Planet, start_at int) (map[string]int, []string) { | |
367 | e2i := make(map[string]int, len(*m)+start_at) | |
368 | i2e := make([]string, len(*m)+start_at) | |
369 | i := start_at | |
370 | for e := range *m { | |
371 | e2i[e] = i | |
372 | i2e[i] = e | |
373 | i++ | |
374 | } | |
375 | return e2i, i2e | |
376 | } | |
377 | func IndexCommodities(m *map[string]Commodity, start_at int) (map[string]int, []string) { | |
378 | e2i := make(map[string]int, len(*m)+start_at) | |
379 | i2e := make([]string, len(*m)+start_at) | |
380 | i := start_at | |
381 | for e := range *m { | |
382 | e2i[e] = i | |
383 | i2e[i] = e | |
384 | i++ | |
385 | } | |
386 | return e2i, i2e | |
387 | } | |
388 | ||
389 | func main() { | |
390 | flag.Parse() | |
391 | data := ReadData() | |
392 | data.p2i, data.i2p = IndexPlanets(&data.Planets, 0) | |
393 | data.c2i, data.i2c = IndexCommodities(&data.Commodities, 1) | |
394 | dims := DimensionSizes(data) | |
395 | table := FillStateTable1(data, dims) | |
396 | table[0] = State{1, 1} | |
397 | best_trades := FindBestTrades(data) | |
398 | ||
399 | for from := range data.Planets { | |
400 | for to := range data.Planets { | |
401 | best_trade := "(nothing)" | |
402 | if best_trades[data.p2i[from]][data.p2i[to]] != "" { | |
403 | best_trade = best_trades[data.p2i[from]][data.p2i[to]] | |
404 | } | |
405 | fmt.Printf("%s to %s: %s\n", from, to, best_trade) | |
406 | } | |
407 | } | |
408 | } |