X-Git-Url: http://git.scottworley.com/nt3d/blobdiff_plain/94faa4e58b86d3e6acdbe4f56d15d8fe21adf5c0..1e62819c99e2c97c4f11c9612012c83cf36dd4ff:/nt3d.js diff --git a/nt3d.js b/nt3d.js index d0d7161..1cabfb1 100644 --- a/nt3d.js +++ b/nt3d.js @@ -80,7 +80,8 @@ nt3d = { // loop is shape in 3d with (0,0) at path[i], shape's // z axis in the direction of shapenormals[i], and // shape's x axis in the direction of pathnormals[i]. - var loop = []; + var loop = shape; + // This is done in three steps: // 1. Rotate shape out of the xy plane so that [0,0,1] // becomes shapenormals[i] by crossing [0,0,1] and @@ -90,25 +91,24 @@ nt3d = { // constrain its rotation about shapenormals[i]. var rot1axis = this.unit(this.cross([0,0,1], shapenormals[i])); var rot1angle = this.angle_between([0,0,1], this.unit(shapenormals[i])); + if (rot1angle > 1e-7) { + loop = this.rotate_about_origin(loop, rot1axis, rot1angle); + } + // 2. Rotate around shapenormals[i] so that [1,0,0] // becomes fixedpathnormals[i]. var rot2axis = this.unit(shapenormals[i]); var rot2angle = this.angle_between([1,0,0], this.unit(fixedpathnormals[i])); - // 3. Translate to path[i]. + if (rot2angle > 1e-7) { + loop = this.rotate_about_origin(loop, rot2axis, rot2angle); + } // This would probably be faster and more numerically stable // if the two rotations were applied as one combined operation // rather than separate steps. - for (var j = 0; j < shape.length; j++) { - var p = [shape[j][0], shape[j][1], 0]; - if (rot1angle > 1e-7) { - p = this.rotate(p, rot1axis, rot1angle); - } - if (rot2angle > 1e-7) { - p = this.rotate(p, rot2axis, rot2angle); - } - p = this.translate(p, path[i]); - loop[j] = p; - } + + // 3. Translate to path[i]. + loop = this.translate(loop, path[i]); + if (i == 0) { result.first_loop = loop; } else { @@ -140,6 +140,9 @@ nt3d = { a[1] - b[1], a[2] - b[2]]; }, + neg: function(a) { + return [-a[0], -a[1], -a[2]]; + }, dot: function(a, b) { return a[0]*b[0] + a[1]*b[1] + a[2]*b[2]; }, @@ -158,20 +161,40 @@ nt3d = { var a_magnitude = this.magnitude(a); return this.scale(a, this.dot(a, b) / a_magnitude * a_magnitude); }, - translate: function(a, b) { - return [a[0] + b[0], a[1] + b[1], a[2] + b[2]]; + translate: function(points, offset) { + var translated = []; + for (var i = 0; i < points.length; i++) { + translated[i] = [points[i][0] + offset[0], + points[i][1] + offset[1], + points[i][2] + offset[2]]; + } + return translated; }, angle_between: function(a, b) { // a and b must be unit vectors return Math.acos(this.dot(a, b)); }, - rotate: function(point, axis, angle) { // axis must be a unit vector + rotate_about_origin: function(points, axis, angle) { // axis must be a unit vector // From http://inside.mines.edu/~gmurray/ArbitraryAxisRotation/ var cosangle = Math.cos(angle); var sinangle = Math.sin(angle); - var tmp = this.dot(point, axis) * (1 - cosangle); - return [axis[0]*tmp + point[0]*cosangle + (-axis[2]*point[1] + axis[1]*point[2])*sinangle, - axis[1]*tmp + point[1]*cosangle + ( axis[2]*point[0] - axis[0]*point[2])*sinangle, - axis[2]*tmp + point[2]*cosangle + (-axis[1]*point[0] + axis[0]*point[1])*sinangle]; + var rotated = []; + for (var i = 0; i < points.length; i++) { + var p = points[i]; + var tmp = this.dot(p, axis) * (1 - cosangle); + rotated[i] = [ + axis[0]*tmp + p[0]*cosangle + (-axis[2]*p[1] + axis[1]*p[2])*sinangle, + axis[1]*tmp + p[1]*cosangle + ( axis[2]*p[0] - axis[0]*p[2])*sinangle, + axis[2]*tmp + p[2]*cosangle + (-axis[1]*p[0] + axis[0]*p[1])*sinangle]; + } + return rotated; + }, + rotate: function(points, center, axis, angle) { // axis must be a unit vector + return this.translate( + this.rotate_about_origin( + this.translate(points, this.neg(center)), + axis, + angle), + center); }, go: function() { // Get params from form