X-Git-Url: http://git.scottworley.com/nt3d/blobdiff_plain/4e2bdb62f6ca8a3a42462f056fdd55bedb41b1e1..72eac64d07af484314745fd0e9466e0f94915684:/nt3d.js?ds=sidebyside diff --git a/nt3d.js b/nt3d.js index ba2315f..0389946 100644 --- a/nt3d.js +++ b/nt3d.js @@ -23,24 +23,213 @@ nt3d = { return this.triangle(a, b, c).concat( this.triangle(c, d, a)); }, + trianglefan: function(fan) { + var result = []; + for (var i = 2; i < fan.length; i++) { + result.push(fan[0], fan[i-1], fan[i]); + } + return result; + }, + closed_trianglefan: function(fan) { + return this.trianglefan(fan.concat([fan[1]])); + }, quadstrip: function(strip) { if (strip.length % 2 != 0) { alert("quadstrip length not divisble by 2!"); } var result = []; for (var i = 2; i < strip.length; i += 2) { - result = result.concat(nt3d.quad(strip[i-2], strip[i-1], strip[i+1], strip[i])); + result = result.concat(this.quad(strip[i-2], strip[i-1], strip[i+1], strip[i])); } return result; }, closed_quadstrip: function(strip) { - return nt3d.quadstrip(strip).concat(nt3d.quad(strip[strip.length-2], strip[strip.length-1], strip[1], strip[0])); + return this.quadstrip(strip.concat([strip[0], strip[1]])); + }, + circle: function(r, n) { + var points = []; + for (var i = 0; i < n; i++) { + points.push([r*Math.cos(2*Math.PI*i/n), + r*Math.sin(2*Math.PI*i/n), + 0]); + } + return points; + }, + cone: function(base_center, apex, radius, steps) { + var base = this.circle(radius, steps); + base = this.rotate_onto(base, [0,0,1], this.sub(apex, base_center)); + base = this.translate(base, base_center); + return this.closed_trianglefan([apex].concat(base)).concat( + this.trianglefan(base.reverse())); + }, + sphere: function(center, radius, latitude_steps, longitude_steps) { + return this.oriented_sphere(center, radius, [0,0,1], [1,0,0], latitude_steps, longitude_steps); + }, + oriented_sphere: function(center, radius, north, greenwich, latitude_steps, longitude_steps) { + var unit_north = this.unit(north); + var north_pole = this.translate_point(this.scale(unit_north, radius), center); + var south_pole = this.translate_point(this.scale(unit_north, -radius), center); + return this.spheroid(north_pole, south_pole, radius, greenwich, latitude_steps, longitude_steps); + }, + spheroid: function(north_pole, south_pole, radius, greenwich, latitude_steps, longitude_steps) { + var delta = this.sub(north_pole, south_pole); + var path = []; + for (var i = 0; i < latitude_steps-1; i++) { + path.push(this.translate_point(south_pole, this.scale(delta, (1-Math.cos(Math.PI*i/(latitude_steps-1)))/2))); + } + path.push(north_pole); + function shape(i) { + return nt3d.circle(radius*Math.sin(Math.PI*i/(latitude_steps-1)), longitude_steps); + } + return this.extrude(path, shape, delta, greenwich); + }, + shapenormals_from_closed_path: function(path) { + return function(i) { + var prev = (i == 0) ? path.length-1 : i-1; + var next = (i == path.length-1) ? 0 : i+1; + return nt3d.sub(path[next], path[prev]); + }; + }, + shapenormals_from_path_and_extra_points: function(path, first_point, last_point) { + return function(i) { + var prev = (i == 0) ? first_point : path[i-1]; + var next = (i == path.length-1) ? last_point : path[i+1]; + return nt3d.sub(next, prev); + }; + }, + shapenormals_from_path_and_first_and_last_normals: function(path, first_normal, last_normal) { + return function(i) { + if (i == 0) { return first_normal; } + if (i == path.length-1) { return last_normal; } + return nt3d.sub(path[i+1], path[i-1]); + }; + }, + pathnormals_from_point: function(path, p) { + // Use this with any point that is not on any path tangent line + var pathnormals = []; + for (var i = 0; i < path.length; i++) { + pathnormals.push(this.sub(path[i], p)); + } + return pathnormals; + }, + to_function: function(thing, make_indexer) { + // If thing is a point, just yield thing every time. + // If thing is a list of points && make_indexer, index into thing. + // If thing is already a function, just return it. + if (({}).toString.call(thing) === "[object Function]") { + return thing; // Already a function + } + if (make_indexer && Array.isArray(thing[0])) { + // Looks like a list of points. + return function(i) { return thing[i]; } + } + return function() { return thing; } + }, + extrude: function(path, shape, shapenormals, pathnormals) { + + var guts_result = this._extrude_guts(path, shape, shapenormals, pathnormals); + // Add the end-caps + // XXX: This doesn't work if shape is not convex + return guts_result.points.concat( + this.trianglefan(guts_result.first_loop.reverse()), + this.trianglefan(guts_result.last_loop)); + + }, + closed_extrude: function(path, shape, shapenormals, pathnormals) { + var guts_result = this._extrude_guts(path, shape, shapenormals, pathnormals); + // Stitch the ends together + return guts_result.points.concat( + this.closed_quadstrip(this.zip(guts_result.first_loop, guts_result.last_loop))); + }, + _extrude_guts: function(path, shape, shapenormals, pathnormals) { + var shape_fun = this.to_function(shape, false); + var shapenormal_fun = this.to_function(shapenormals, true); + var pathnormal_fun = this.to_function(pathnormals, true); + var result = { points: [] }; + var prev_loop; + for (var i = 0; i < path.length; i++) { + var shapenormali = shapenormal_fun(i, path[i]); + var pathnormali = pathnormal_fun(i, path[i], shapenormali); + + // Fix pathnormali to be perfectly perpendicular to + // shapenormali. pathnormali must be perpendicular to + // shapenormali or the second rotation will take loop + // back out of the shapenormali plane that the first + // rotation so carefully placed it in. But, letting + // callers be sloppy with the pathnormals can greatly + // simplify generating them -- so much so that you can + // often just pass a constant to use the same value + // along the whole path. + pathnormali = this.project_to_orthogonal(shapenormali, pathnormali); + + var shapei = shape_fun(i, path[i], shapenormali, pathnormali); + + // loop is shapei in 3d with (0,0) at path[i], shape's + // z axis in the direction of shapenormali, and shape's + // x axis in the direction of pathnormali. We tack + // [1,0,0] onto the end as a hack to see where it ends + // up after the first rotation. This is removed later. + var loop = shapei.concat([[1,0,0]]); + + // This is done in three steps: + // 1. Rotate shape out of the xy plane so that [0,0,1] + // becomes shapenormali. This puts the shape in + // the correct plane, but does not constrain its + // rotation about shapenormali. + loop = this.rotate_onto(loop, [0,0,1], shapenormali); + var shapex = loop.pop(); + + // 2. Rotate around shapenormali so that [1,0,0] + // becomes pathnormali. + loop = this.rotate_onto(loop, shapex, pathnormali); + + // (This would probably be faster and more numerically stable + // if the two rotations were applied as one combined operation + // rather than separate steps.) + + // 3. Translate to path[i]. + loop = this.translate(loop, path[i]); + + if (i == 0) { + result.first_loop = loop; + } else { + result.points = result.points.concat(this.closed_quadstrip(this.zip(loop, prev_loop))); + } + prev_loop = loop; + } + result.last_loop = prev_loop; + return result; + }, + zip: function(a, b) { + var result = []; + if (a.length != b.length) { + alert("Zip over different-sized inputs"); + } + for (var i = 0; i < a.length; i++) { + result.push(a[i], b[i]); + } + return result; + }, + magnitude: function(a) { + return Math.sqrt(a[0]*a[0] + a[1]*a[1] + a[2]*a[2]); + }, + unit: function(a) { + return this.scale(a, 1 / this.magnitude(a)); }, sub: function(a, b) { return [a[0] - b[0], a[1] - b[1], a[2] - b[2]]; }, + neg: function(a) { + return [-a[0], -a[1], -a[2]]; + }, + dot: function(a, b) { + return a[0]*b[0] + a[1]*b[1] + a[2]*b[2]; + }, + scale: function(v, s) { // Scale vector v by scalar s + return [s*v[0], s*v[1], s*v[2]]; + }, cross: function(a, b) { return [a[1]*b[2] - a[2]*b[1], a[2]*b[0] - a[0]*b[2], @@ -49,23 +238,149 @@ nt3d = { normal: function(a, b, c) { return this.cross(this.sub(a, b), this.sub(b, c)); }, + project: function(a, b) { // Project b onto a + var a_magnitude = this.magnitude(a); + return this.scale(a, this.dot(a, b) / (a_magnitude * a_magnitude)); + }, + project_to_orthogonal: function(a, b) { + // The nearest thing to b that is orthogonal to a + return this.sub(b, this.project(a, b)); + }, + translate: function(points, offset) { + var translated = []; + for (var i = 0; i < points.length; i++) { + translated[i] = this.translate_point(points[i], offset); + } + return translated; + }, + translate_point: function(point, offset) { + return [point[0] + offset[0], + point[1] + offset[1], + point[2] + offset[2]]; + }, + angle_between: function(a, b) { // a and b must be unit vectors + var the_dot = this.dot(a, b); + if (the_dot <= -1) { + return Math.PI; + } + if (the_dot >= 1) { + return 0; + } + return Math.acos(the_dot); + }, + rotate_about_origin: function(points, axis, angle) { // axis must be a unit vector + // From http://inside.mines.edu/~gmurray/ArbitraryAxisRotation/ + var cosangle = Math.cos(angle); + var sinangle = Math.sin(angle); + var rotated = []; + for (var i = 0; i < points.length; i++) { + var p = points[i]; + var tmp = this.dot(p, axis) * (1 - cosangle); + rotated[i] = [ + axis[0]*tmp + p[0]*cosangle + (-axis[2]*p[1] + axis[1]*p[2])*sinangle, + axis[1]*tmp + p[1]*cosangle + ( axis[2]*p[0] - axis[0]*p[2])*sinangle, + axis[2]*tmp + p[2]*cosangle + (-axis[1]*p[0] + axis[0]*p[1])*sinangle]; + } + return rotated; + }, + rotate_onto: function(points, a, b) { + // Rotate points such that a (in points-space) maps onto b + // by crossing a and b to get a rotation axis and using + // angle_between to get a rotation angle. + var angle = this.angle_between(this.unit(a), this.unit(b)); + if (Math.abs(angle) < 1e-15) { + // No siginificant rotation to perform. Bail to avoid + // NaNs and numerical error + return points; + } + var axis = this.unit(this.cross(a, b)); + return this.rotate_about_origin(points, axis, angle); + }, + rotate: function(points, center, axis, angle) { // axis must be a unit vector + return this.translate( + this.rotate_about_origin( + this.translate(points, this.neg(center)), + axis, + angle), + center); + }, + point_equal: function(a, b, epsilon) { + return Math.abs(a[0] - b[0]) < epsilon && + Math.abs(a[1] - b[1]) < epsilon && + Math.abs(a[2] - b[2]) < epsilon; + }, + degenerate_face_epsilon: 1e-10, + is_degenerate: function(a, b, c) { + return this.point_equal(a, b, this.degenerate_face_epsilon) || + this.point_equal(b, c, this.degenerate_face_epsilon) || + this.point_equal(c, a, this.degenerate_face_epsilon); + }, go: function() { + // Remove any previous download links + var old_download_link = document.getElementById("nt3d_download"); + if (old_download_link) { + old_download_link.parentNode.removeChild(old_download_link); + } + + // Continue in a callback, so that there's not a stale download + // link hanging around while we process. + setTimeout(function(the_this) { (function() { + // Get params from form var params = []; for (var i = 0; i < this.user_params.length; i++) { - params[i] = this.form.elements["param"+i].value; + var as_string = this.form.elements["param"+i].value; + var as_num = +as_string; + params[i] = isNaN(as_num) ? as_string : as_num; } // Run user_function this.points = this.user_function.apply(null, params); + + // Do a little validation if (this.points.length % 3 != 0) { alert("Points list length not divisble by 3!"); } - var n = this.points.length / 3; + var nan_count = 0; + var nan_point_count = 0; + var nan_face_count = 0; + for (var i = 0; i < this.points.length/3; i++) { + var nan_in_face = false; + for (var j = 0; j < 3; j++) { + var nan_in_point = false; + for (var k = 0; k < 3; k++) { + if (isNaN(this.points[i*3+j][k])) { + nan_count++; + nan_in_point = true; + nan_in_face = true; + } + } + if (nan_in_point) nan_point_count ++; + } + if (nan_in_face) nan_face_count ++; + } + if (nan_count != 0) { + alert(nan_count + " NaNs in " + nan_point_count + " points in " + nan_face_count + " faces (" + (100 * nan_face_count / (this.points.length/3)) + "% of faces)."); + } + + // Remove degenerate faces + var degenerate_face_count = 0; + for (var i = 0; i < this.points.length/3; i++) { + if (this.is_degenerate(this.points[i*3+0], + this.points[i*3+1], + this.points[i*3+2])) { + this.points.splice(i*3, 3); + i--; + degenerate_face_count ++; + } + } + if (degenerate_face_count != 0) { + console.log("Removed " + degenerate_face_count + " degenerate faces"); + } // Make STL this.stl = "solid " + this.user_function.name + "\n"; - for (var i = 0; i < n; i++) { + for (var i = 0; i < this.points.length/3; i++) { var a = this.points[i*3+0]; var b = this.points[i*3+1]; var c = this.points[i*3+2]; @@ -80,11 +395,6 @@ nt3d = { } this.stl += "endsolid " + this.user_function.name + "\n"; - // Remove any previous download links - var old_download_link = document.getElementById("nt3d_download"); - if (old_download_link) { - old_download_link.parentNode.removeChild(old_download_link); - } // Offer result as download var download_link = document.createElement("a"); @@ -95,6 +405,8 @@ nt3d = { download_link.setAttribute("href", "data:application/sla," + encodeURIComponent(this.stl)); this.ui.appendChild(download_link); setTimeout(function() { download_link.setAttribute("style", "-webkit-transition: background-color 0.4s; -moz-transition: background-color 0.4s; -o-transition: background-color 0.4s; -ms-transition: background-color 0.4s; transition: background-color 0.4s; background-color: inherit"); }, 0); + + }).call(the_this); }, 0, this); // (We were in a callback this whole time, remember?) }, framework: function (f, params) { this.user_function = f;