}
function invert(table) {
- if (table.length == 0) return x => x;
-
// Here we solve
// net = m * gross + b
// for gross:
// and the calculate the inverse's bounds
const ms = table.map(([start, end, rate]) => 1 - rate);
- const full_brackets = [[0]].concat(table.map(([start, end, rate]) => (end - start) * rate)).slice(0, table.length);
+ const full_brackets = [0].concat(table.map(([start, end, rate]) => (end - start) * rate)).slice(0, table.length);
function sum_lower_brackets(remaining_brackets, acc = 0) {
if (remaining_brackets.length == 0) return [];
return [acc + remaining_brackets[0]].concat(sum_lower_brackets(remaining_brackets.slice(1), acc + remaining_brackets[0]));
const inverse_table = table.map(([start, end, rate], i) => {
const m = ms[i];
const b = bs[i];
- return [(start - b) / m, (end - b) / m, m, b];
+ return [m * start + b, m * end + b, m, b];
});
return function(net) {
for (const [start, end, m, b] of inverse_table) {
- if (start < net && net < end) {
+ if (start <= net && net <= end) {
return (net - b) / m;
}
}
+ return net;
};
}